ATTACHMENT 9

NOISE REPORT

KOIKAS ACOUSTICS PTY

CONSULTANTS IN NOISE & VIBRATION

Commercial 1 (Unit 27)

637 - 645 Forest Road

BEXLEY NSW 2207

ABN 12 058 524 771

Ph: (02) 9587 9702

Fax: (02) 9587 5337

E-mail: Office@KoikasAcoustics.com

NOISE COMPLIANCE TESTING

OF PF FORMATION EXTRACTIVE INDUSTRY OPERATIONS

HITCHCOCK ROAD SAND PROJECT

(JULY 2016 - JUNE 2017)

	DOCUMENT CONTROL SHEET				
Project Title	NOISE COMPLIANCE TESTING OF PF FORMATION EXTRACTIVE INDUSTRY OPERATIONS HITCHCOCK ROAD SAND PROJECT (JULY 2016 - JUNE 2017)				
Our Project Number	1933				
Our File Number	Z:\ACOUSTICS\ACOUSTICS 17\REPORT\Other\1933C20170822mfeMaroofo\$1-4v1.doex				
Issue Date	V1 22 nd August 2017				
Barrand Bu	Michael Fan Chiang				
Prepared By	The state of the s				
Checked By	Mick Koikas Miclan				
Client Project No.	Tak				
Prepared For	PF Formation Trust				
	1774 Wisemans Ferry Road				
	Maroota NSW 2756				
	Attention: Joshua Graham				
	E-mail: josh@pfformation.com.au ; accounts@pfformation.com.au				

The information contained herein should not be reproduced except in full. The information provided in this report relates to acoustic matters only. Supplementary advice should be sought for other matters relating to construction, design, structural, fire-rating, water proofing, and the likes.

KOIKAS ACOUSTICS PTY LTD

Date: 22rd August 2016

Reference: 1933C20170822mfcMarcota31-4v1

Prepared For: PF Farmation Trust

Noise Compliance Testing: Hitchcock Road Sand Project (July 2016 - June 2017)

NOISE COMPLIANCE TESTING OF PF FORMATION EXTRACTIVE INDUSTRY OPERATIONS

HITCHCOCK ROAD SAND PROJECT

(JULY 2016 - JUNE 2017)

1.0	CONSULTANT'S BRIEF	4
2.0	SITE DESCRIPTION	5
2.1		
2.2	2 HOURS OF OPERATION	6
2.3	AMBIENT NOISE PROFILE OF THE NOISE MONITORING SITES (RECEIVERS)	6
2.4		6
3.0	NOISE CRITERIA	
3.1	BACKGROUND NOISE	7
3.2	2 EPA INDUSTRIAL NOISE POLICY	7
	3.2.1 Intrusive Noise Criterion	8
	3.2.2 Noise Amenity Criterion	8
3.3	NOMINATED NOISE CRITERIA	9
4.0	NOISE SURVEYS	10
4.1	NOISE MONITORING PROCEDURES	10
4.2	2 ATTENDED NOISE MONITORING	10
5.0	NOISE SURVEY RESULTS	12
6.0	CONCLUSIONS	15

Appendix A -Aerial photograph

NOISE COMPLIANCE TESTING OF PF FORMATION EXTRACTIVE INDUSTRY OPERATIONS

HITCHCOCK ROAD SAND PROJECT

(JULY 2016 - JUNE 2017)

1.0 CONSULTANT'S BRIEF

Koikas Acoustics Pty Ltd was engaged by PF Formation Trust to undertake noise compliance testing

during the sand extraction operations for Hitchcock Road Sand Project in Maroota.

The assessment provides the following:

· a discussion of the applicable noise criteria at each site, and

attended noise monitoring survey results.

Sand extractions have been undertaken in this area for many years. Koikas Acoustics has been advised

that there have been no noise complaints received from the local community in regards to the sand

mining extraction works since periodic noise surveys commenced.

All monitoring procedures were done in accordance with the requirements of the Project Approval of 3rd

February 2009 and EPA Licence 3407.

Some measurements of sleep disturbance could not be taken 1 metre from a bedroom window. Sound

level measurements were taken from the boundary. Measurements taken from the boundary were

closer to the noise source and therefore louder compared to if measurements had been taken outside a

bedroom window.

KOIKAS ACQUISTICS PTY LTD

Date: 22rd August 2016
Reference: 1933C20170822mfcMarcoto21-4v1
Prepared For: PF Formation Trust
Noise Comptiance Testing: Hitchcock Bood Sand Project (July 2016 - June 2017)

2.0 SITE DESCRIPTION

2.1 SITE LOCATION

The Hitchcock Road Sand Project site is bounded by:

- Old Northern Road along the east,
- Wisemans Ferry Road to the west (intersecting with the Old Northern Road to the north), and
- other rural properties to the south.

Refer to Figure 1 below for the project site extraction area.

Figure 1. Hitchcock Road Sand Project Site Area

Details of the topography are attached as a rendered aerial photograph in the Hitchcock Road Sand Extraction and Rehabilitation Project, revised January 2016 Maroota Noise Management Plan (Approved 21/07/2016) and the Project Approval dated 3rd February 2009 signed by the NSW Minister for Planning.

HOURS OF OPERATION 22

The hours of operation are specified in the project approval as shown in Table 1 below.

Table 1. Hours of Operation					
Activity	Day	Time [Hours]			
Construction	Monday to Friday Saturday Sunday and Public Holiday	0700 – 1800 0800 – 1300 None			
Quarrying and processing including overburden removal	Monday to Saturday Sunday and Public Holiday	0700 – 1800 None			
Product Transportation	Monday to Saturday Sunday and Public Holiday	0600 – 1800 None			
Maintenance	Monday to Saturday Sunday and Public Holiday	0700 – 1800 None			

2.3 AMBIENT NOISE PROFILE OF THE NOISE MONITORING SITES (RECEIVERS)

The assessment site is located in a rural-residential area. The main roads passing through this area being Old Northern Road and Wisemans Ferry Road carry light and heavy vehicles.

During the daytime, the perceived intrusiveness of noise of cars and trucks traversing along these roads whilst residents are inside or outside their homes is expected to be significantly greater compared to the noise of sand mining extraction activities.

The rustling of leaves with slight wind speeds would normally raise background noise levels. For periods when the wind is calm, background noise levels would typically be that of distant noise emanating from trucks and cars, and the sound of insects and birds.

MONITORING LOCATIONS

Noise monitoring was conducted in the Maroota area at the following locations:

- 1. Tornatola property Hitchcock Road (driveway);
- 2. Pignataro property (corner of Wisemans Ferry Road and Old Northern Road)
- 3. Jurds property (back of fire shed, adjacent to Old Northern Road)
- 4. Maroota Public School (rear of school)

The site locations are attached as an aerial photo in Appendix A.

3.0 NOISE CRITERIA

The noise criteria are specified in the project approval, EPA Licence 3407 and approved Noise

Management Plan.

3.1 BACKGROUND NOISE

The noise criterion has been derived from previous noise surveys by undertaking long term ambient noise

level measurements at a representative site. The background noise level was determined over

consecutive 15 minute periods for a duration of at least one week. From this data of Lago, 15 minutes noise

levels, the 10 percentile lowest background noise levels were determined for each of the days. The rating

background level was then determined by calculating the median value of the daily 10 percentile

background noise levels for each of the three specific time periods: daytime, evening and night time.

The rating background level result is used to determine the noise criteria applicable for the surrounding

residential properties in accordance with the EPA's Industrial Noise Policy (INP) assessment procedures.

The background noise level LAGO, 15 minutes is normally determined in the absence of extraneous noise such

as traffic, wind, rain, conversation, birds chirping, insect noise and unnatural increases in noise from

distant sources due to local air movement. The EPA defines such sources as incidental noise which can cause the masking of offensive noise from a specific source. When traffic or other incidental noises

cannot be excluded, then it is considered that these noise sources are part of the background noise.

3.2 **EPA INDUSTRIAL NOISE POLICY**

The INP defines two criteria, the Intrusive Noise Criterion and the Amenity Noise Criterion. The EPA

requires that compliance with both the intrusive and amenity criteria be achieved for the purpose of

controlling the intrusive nature of the industrial noise in the short term and also maintaining the noise

level amenity of the area for residences and other land uses.

For the purpose of applying the INP the following time periods apply:

 Daytime 7am to 6pm Monday to Saturday

8am to 6pm Sunday

6pm to 10pm Monday to Sunday Evening

 Night-time 10pm to 7am Monday to Saturday

10pm to 8am Sunday

KOIKAS ACOUSTICS PTY LTD

3.2.1 Intrusive Noise Criterion

The intrusiveness of an industrial noise source is generally considered acceptable by people if the equivalent continuous (A-weighted) noise level (Lag, 15 minutes) does not exceed the background noise level by more than 5 dB. The intrusive noise criterion is defined as:

When the noise source contains annoying characteristics such as prominent tonal, impulsive, intermittent, irregular and dominant low frequency components, adjustments are made.

3.2.2 Noise Amenity Criterion

In order to limit the continuing increase in noise, the EPA has nominated recommended acceptable and maximum ambient noise levels for various receiver sites from industrial noise.

Table 2.1 of the EPA's INP (below) specifies the following acceptable and maximum recommended LAGO Period noise levels for this project specific type area. In this case, the area is described as being Rural.

The EPA refers to rural as:

Rural-means an area with an acoustical environment that is dominated by natural sounds, having little or no road traffic. Such areas may include:

- an agricultural area, except those used for intensive agricultural activities
- a rural recreational area such as resort areas
- a wildemess area or national park
- an area generally characterised by low background noise levels (except in the immediate vicinity of industrial noise sources).

This area may be located in either a rural, rural-residential, environment protection zone or scenic protection zone, as defined on a council zoning map (Local Environmental Plan (LEP) or other planning instrument).

Table 2.1 of the EPA INP mended LAeq, Period Reco Type of Receiver Indicative Noise Amenity Recommended Maximum Time of Day Day Residential Rural Evening 45 50 40 45 Noisiest 1 hour Schools All 35 40 period when in use

KOIKAS ACOUSTICS PTY LTD

Prepared For: PF Formation Trust

Prepared For: PF Formation Trust

Noise Compliance Testing: Hitchcock Road Sand Project (July 2016 - June 2017)

Table 2.2 of the EPA INP (below) specifies the modification to the acceptable noise level to account for the existing level of industrial noise when additional industrial noise sources are proposed for the site:

Table 2.2 of the EPA INP

Total existing LAeq noise level from industrial sources, dB(A)	Maximum Lasq noise level from new sources alone, dB(A) If existing noise level is likely to decrease in future: acceptable noise level minus 10 If existing noise level is unlikely to decrease in future: existing level minus 10				
Acceptable noise level plus 2					
Acceptable noise level plus 1	Acceptable noise level minus 8				
Acceptable noise level	Acceptable noise level minus 8				
Acceptable noise level minus 1	Acceptable noise level minus 6				
Acceptable noise level minus 2	Acceptable noise level minus 4				
Acceptable noise level minus 3	Acceptable noise level minus 3				
Acceptable noise level minus 4	Acceptable noise level minus 2				
Acceptable noise level minus 5	Acceptable noise level minus 2				
Acceptable noise level minus 6	Acceptable noise level minus 1				
< Acceptable noise level minus 6	Acceptable noise level				

The amendments to the EPA INP (2006) state that both the predicted amenity noise level criterion and the intrusive noise level criteria need to be satisfied, which supersedes the requirement of assessing only the most stringent of the two noise criterion. In clearly obvious cases, one or the other noise criterion is considered. In this case, the intrusive noise criterion has been considered as it is clearly the most stringent due to the low Rating Background Level (RBL).

3.3 NOMINATED NOISE CRITERIA

As per the approved Noise Management Plan January 2016, the following noise criteria were adopted:

Table 9.1 Noise impact assessment monitoring locations and criteria

Noise assessment location		Other locations	Day	Night 1	Night 1 La1 (1 minute)	
		covered	LAeq (15 minute)	Laeq (15 minute)		
1.	R9 – Young, Hitchcock Road	R10 Tomatola	39	35	45	
2.	R5 - Pignataro	R6 Camilleri	42	35	45	
3.	R3 – Fire station/Jurd	R1 Hammond and R2 Hitchcock	40	35	45	
4.	R7 – Maroota Public School	R6 Camilleri and R8 Portelli	36(LAeq 1 hour)	N/A	N/A	

Note 1: Night time is defined as the period between 10.00pm and 7.00am. Activities on the site start at 6.00am and are completed by 6.00pm. There is no activity on the site during the evening period.

4.0 NOISE SURVEYS

NOISE MONITORING PROCEDURES 4.1

All noise methodologies and equipment used comply with the following Australian Standards:

- AS1259.2-1990 "Acoustics Sound Level Meters Integrating Averaging", and
- · ISO 1996.2-2007 "Acoustics Description, measurement and assessment of environmental noise" Part 2: Determination of environmental noise levels.

All sound and noise level measurements were A-frequency and Fast-time weighted.

ATTENDED NOISE MONITORING

Attended noise monitoring was conducted on the following days at each monitoring location below:

At location 1 Tornatola Property Hitchcock Road (@ driveway)

18 th July 2016	Daytime hours
19 th July 2016	Night-time hours
20th October 2016	Night-time hours
20th October 2016	Daytime hours
3rd February 2017	Night-time hours
3 rd February 2017	Daytime hours
1" June 2017	Night-time hours
1" June 2017	Daytime hours

At location 2 Pignataro Property (corner of Wisemans Ferry Road and Old Northern Road)

18 th July 2016	Daytime hours
19 th July 2016	Night-time hours
20 th October 2016	Night-time hours
20 th October 2016	Daytime hours
3 rd February 2017	Night-time hours
3 rd February 2017	Daytime hours
1" June 2017	Daytime hours
2 nd June 2017	Night-time hours

At location 3 Jurds Property (back of fire shed, adjacent to Old Northern Road)

18th July 2016 Daytime hours 19th July 2016 Night-time hours 20th October 2016 Night-time hours 24th October 2016 Daytime hours 3rd February 2017 Night-time hours 3rd February 2017 Daytime hours 1# June 2017 Night-time hours 1" June 2017 Daytime hours

At location 4 Maroota Public School (rear of school)

18th July 2016 Daytime hours 24th October 2016 Daytime hours 3rd February 2017 Daytime hours 1" June 2017 Daytime hours

The noise measurements taken from July 2016 to June 2017 were conducted with a Class 1 Svan 971 S/N 40412 Sound Level Meter and calibrated with a Svanteck SV 33 Class 1 Acoustic Calibrator.

5.0 NOISE SURVEY RESULTS

Table 2, 3, 4 and 5 refers to the measured noise levels obtained at locations 1, 2, 3 and 4 respectively for each monitoring period. It is noted, that in all cases the measured Lag was dominated by environmental and intermittent noise sources unrelated to the quarry noise. The exceeding levels are therefore not that of quarry activities.

Date	Applicable Criterion Level	Criterion Level Noise Level	Measured Ex LAFO 39	Exceeding [dB]	Note		
18* July 2016 Daytime hours	39 LAug, 15min				Noise dominated by road traffic. See also Note 6		
19 ⁺ July 2016 Night-time hours	35 LAsq, 16min 45 LA1,1min	55 LAsq 16min 56 LA1,1min	44	20 11	Noise dominated by road traffic. See also Note 6		
20 ⁶ October 2016 Night-time hours	35 LAsq,16min 45 LA1,1min	46 LAsq 15min 54 LA1,1min	38	11 9	Road traffic noise levels of around 52 dB(A). See also Note 1.		
20* October 2016 Daylime hours	39 LAsq, 15min	47 LAsq,15min	40	8	Noise dominated by road traffic and nature sounds. See also Note 1.		
3 ⁻⁴ February 2017 Night-time hours	35 LAsq,15min 45 LA1,1min	65 LAsq,15min 69 LA1,1min	39	30 24	Noise dominated by insect noise. See also Note 2		
3™ February 2017 Daytime hours	39 LAsq, 15min	57 LAsq,15min	38	18	Noise dominated by road traffic, See also Note 6		
1* June 2017 Night-time hours	35 LAsq,15min 45 LA1,1min	49 LAsq.15min 41 LAT,1min	48 37	14	Noise dominated by road traffic. See also Note 1.		
1* June 2017 Daytime hours	39 LAsq, 15min	41 LAma, 15min	40	2	Noise dominated by road traffic. See also Note 1.		

Date	Applicable Criterion Level	Criterion Level Noise Level	Measured LA90 48	Exceeding [dB]	Note		
18 ⁴ July 2016 Daylime hours					Noise dominated by road traffic. See also Note 3.		
19 th July 2016 Night-time hours	35 LAsq, 15min 45 LA1,1min	54 LAsq 15min 52 LA1,1min	43	19 7	Noise dominated by road traffic. See also Note 6.		
20 th October 2016 Night-time hours	35 LAsq, 15min 45 LA1,1min	52 LAsq 15min 63 LA1,1min	34	17 18	Road traffic noise levels of around 56 dB(A). See also Note 6.		
20 th October 2016 Daytime hours	42 LAsq, 16min	50 LAsq,15min	40	8	Noise dominated by road traffic. See also Note 1.		
3 rd February 2017 Night-time hours	35 LAsq,15min 45 LA1,1min	47 LAsq 15min 58 LA1,1min	34	12 13	Noise dominated by road traffic. See also Note 4.		
3™ February 2017 Daylime hours	42 LAsq, 15min	48 LAsq,15min	36	6	Noise dominated by road traffic. See also Note 1.		
1* June 2017 Daylime hours	42 LAsq, 15min	46 LAsq 16min	45	4	Noise dominated by road traffic. See also Note 1,		
2 ⁻⁴ June 2017 Night-time hours	35 LAsq, 15min 45 LA1,1min	51 LAsq 15min 52 LA1,1min	49	16 7	Noise dominated by road traffic. See also Note 6.		

Date	Applicable Criterion Level		Measured LAP0	Exceeding [dB]	Note		
18 ⁴ July 2016 Daytime Hours	40 LAsq, 15min	58 LAwq, 15min	43	18	Noise dominated by road traffic. See also Note 5.		
19 ⁴ July 2016 Night-time hours	35 (Asq,15min 45 (A1,1min	58 LAsq,18min 62 LA1,1min	43	23 17	Noise dominated by road traffic. See also Nate 5.		
20 th October 2016 Night-fime hours	35 LAsq,15min 45 LA1,1min	57 LAsq, 15min 64 LA1,1min	33	22 19	Noise dominated by road traffic. See also Nate 1.		
24* October 2016 Daytime Hours	40 LAsq, 16min	55 LAsq 16min	37	15	Noise dominated by road traffic. See also Note 3.		
3 ⁻¹ February 2017 Night-time hours	35 LAsq,15min 45 LA1,1min	52 LAsq,15min 58 LA1,1min	30	17 23	Noise dominated by road traffic and insect noise during Julls in traffic. See also Note 4.		
3 ⁻ⁱ February 2017 Daytime Hours	40 Liaq, 15min	46 LAsq 15min	30	6	Noise dominated by road traffic. See also Note 6.		
1" June 2017 Night-time hours	35 LAsq, 15min 45 LA1,1min	41 LAsq,15min 55 LA1,1min	40 52	6 10	Noise dominated by road traffic and rustling of leaves from breeze. See also Note 1.		
1* June 2017 Daytime Hours	40 Lag, 15min	39 LAsq. 15min	39	- 3	Noise dominated by road traffic. See also Note 5.		

Date	Applicable Criterion Level	Measured Measured Noise Level LAPO	Exceeding [dB]	Note	
29 [±] July 2016 Daytime hours		47 LAsq 15min	43	11	Noise dominated by bird noise and natural sounds. See also Note 7.
24* October 2016 Daytime hours	36 LAsq, 15min	43 LAsq 16min	40	7	Noise dominated by road traffic and bird noise. See also Note 3.
3 ⁻⁴ February 2017 Daytime hours	February 2017 ayrime hours June 2017		35	4	See Note 3.
1* June 2017 Daytime hours			45	10	See Note 3.

- Dominant noise source is that of traffic and birds chirping or natural sounds such as wind and rustling of leaves (during Note 1. lulls in traffic). Quarry noise was not audible.
- Note 2. Dominant noise source is that of insect noise. Quarry noise was not audible and not measurable.
- Note 3. Dominant noise source is that of traffic and birds chirping or natural sounds such as wind and rustling of leaves (during Iulls in traffic). Quarry noise was audible but not measurable.
- Note 4. Dominant noise source is that of traffic and insects (during Iulls in traffic). Quarry noise was not audible and not
- Note 5. Dominant noise source is that of traffic. Quarry noise was audible during lulls in traffic but not measurable.
- Note 6. Dominant noise source is that of traffic. Quarry noise was not audible even during lulls in traffic. Therefore quarry noise was not measurable.

Note 7. Dominant noise source is that of birds chirping and natural sounds such as wind and rustling of leaves (during Iulls in traffic). Other quarry noise was audible but not measurable.

On account of the large distances which sound travels from the sand mining extraction activities to the surrounding residential premises, it is often not measureable because it is either less than the prevailing background noise or because it is inaudible. At all the noise monitoring sites, the noise emanating from the Hitchcock Road Sand Project currently has minimal contribution compared to other noise sources such as traffic noise, birds chirping, insect noise, rustling of leaves and other quarry operation.

The noise criteria nominated by EPA Licence 3407, Minister of Planning approval and Table 9.1 of the approved Noise Management Plan January 2016 for the hours of operation were therefore not exceeded.

6.0 CONCLUSIONS

Koikas Acoustics was requested to undertake noise level surveys around the Hitchcock Road Sand Project

sand mining extraction and processing quarry (from July 2016 to June 2017) and ascertain whether the

noise from the extraction and processing works currently exceed the nominated noise criteria as

nominated by EPA licence 3407 and the project approval.

The results of the noise surveys show that the site extraction works are currently comply with all the

nominated noise criteria (including cumulative noise criteria).

At most sites, quarry activities are either just audible or inaudible and in most of cases, the noise

emanating from the site was found not to be measureable on account of that the natural noise (which

includes birds chirping, insects, rustling of leaves) and un-natural noise (being cars and trucks traversing

along the main roads).

There are no noise mitigation measures necessary to be implemented for the subject quarry sites.

Koikas Acoustics therefore certifies that the subject Maroota Hitchcock Road Sand Project currently

complies with the nominated noise criteria despite that the measured noise levels (predominantly that of traffic and other natural sound sources) are currently producing sound levels in excess of the nominated

noise criteria.

KOIKAS ACQUISTICS PTY LTD

15

APPENDIX A - AERIAL PHOTOGRAPH

ATTACHMENT 10

AIR QUALITY REPORT

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT:

Gravimetric Dust Monitoring at Maroota for July 2016

FILE No: 250 / 16

REQUEST No.: 68799

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

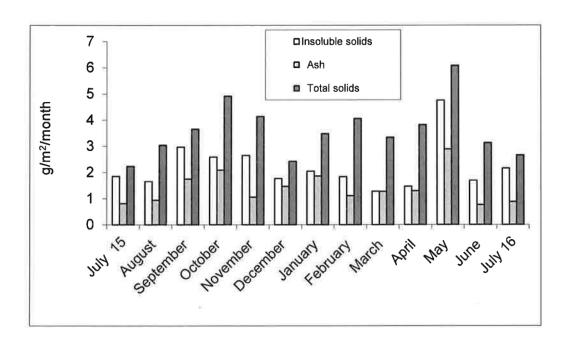
Lab Sample Number:	181373	181374	181375	181376
Site Location Number: Sample Description:	1	2 Dı	3 ust	4
Sampling Period:	From	1.07.16	to	1.08.16
TEST RESULTS				
Insoluble Solids (g/m² month)	2.16	3.43	2.72	2.89
Ash (g/m² month)	0.88	1.23	1.22	1.34
Combustible Matter (g/m² month)	1.28	2.20	1.50	1.55
Soluble Matter (g/m² month)	0.49	0.92	1.48	0.59
Total Solids (g/m² month)	2.65	4.34	4.20	3.48
Volume of Liquid in the Gauge (ml)	1300	1300	1200	1300

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

J.Graham, Mat. File, File.

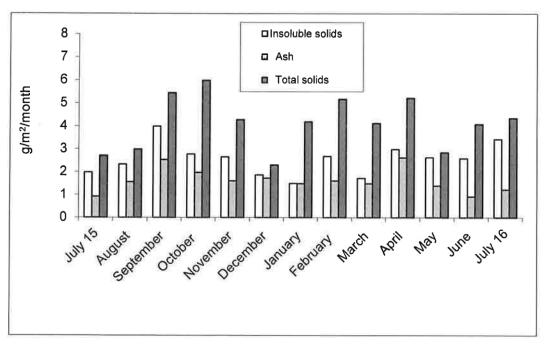
Approved Signatory


Serial No.

S. Krishnamoorthy

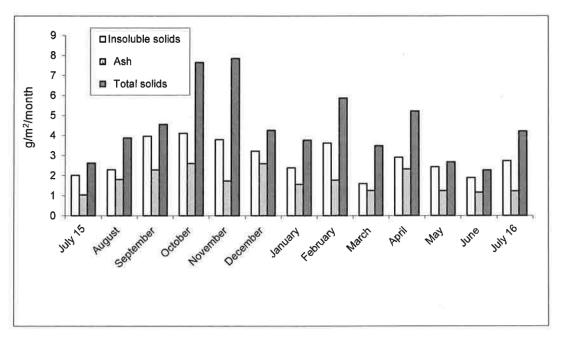
148753

Dust Monitoring MAROOTA Site 1 Maroota Public School


Insoluble solids	Ash	Total solids
1.85	0.81	2.23
1.66	0.94	3.04
2.97	1.75	3.65
2.59	2.09	4.91
2.65	1.06	4.14
1.77	1.47	2.42
2.05	1.86	3.48
1.84	1.11	4.06
1.28	1.27	3.34
1.47	1.30	3.82
4.75	2.89	6.08
1.69	0.76	3.13
2.16	0.88	2.65
	solids 1.85 1.66 2.97 2.59 2.65 1.77 2.05 1.84 1.28 1.47 4.75 1.69	solids 1.85 0.81 1.66 0.94 2.97 1.75 2.59 2.09 2.65 1.06 1.77 1.47 2.05 1.86 1.84 1.11 1.28 1.27 1.47 1.30 4.75 2.89 1.69 0.76

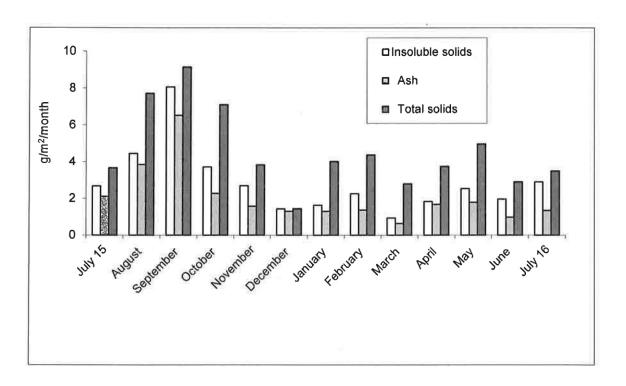
^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 2 Hitchcock Road


	Insoluble solids	Ash	Total solids
July 15	1.98	0.92	2.71
August	2.33	1.56	2.99
September	3.99	2.53	5.44
October	2.78	1.97	5.98
November	2.65	1.61	4.27
December	1.87	1.73	2.30
January	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July 16	3.43	1.23	4.34

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 3 Jurd's House


	Insoluble	Ash	Total
	solids		solids
July 15	2.01	1.03	2.61
August	2.29	1.80	3.87
September	3.96	2.28	4.55
October	4.10	2.60	7.65
November	3.79	1.73	7.85
December	3.21	2.59	4.25
January	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July 16	2.72	1.22	4.20

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 4 Lot 2 DP 510812

	Insoluble solids	Ash	Total solids
July 15	2.67	2.10	3.66
August	4.44	3.84	7.71
September	8.06	6.52	9.14
October	3.71	2.27	7.09
November	2.68	1.57	3.82
December	1.42	1.29	1.43
January	1.62	1.29	4.01
February	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July 16	2.89	1.34	3.48

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT: Gravimetric Dust Monitoring at Maroota for August 2016

FILE No: 250 / 16

REQUEST No.: 69410

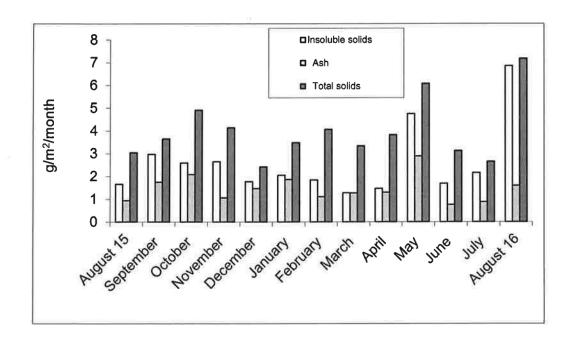
TEST PROCEDURE: AS 3580.10.1 - 2003 - Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

Lab Sample Number:	182731	182732	182733	182734
Site Location Number:	1	2	3	4
Sample Description:		Dι	ıst	
Sampling Period:	From	1.08.16	to	1.09.16
TEST RESULTS				
Insoluble Solids (g/m² month)	6.86	3.03	9.82	2.88
Ash (g/m² month)	1.59	1.81	2.64	1.00
Combustible Matter (g/m² month)	5.27	1.22	7.17	1.88
Soluble Matter (g/m² month)	0.32	5.03	1.87	5.21
Total Solids (g/m² month)	7.18	8.06	11.68	8.09
Volume of Liquid in the Gauge (ml)	2100	1900	2200	2100

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

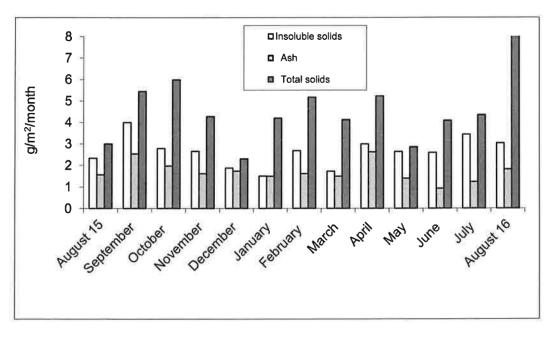
J.Graham, Mat. File, File.



S. Krishnamoorthy

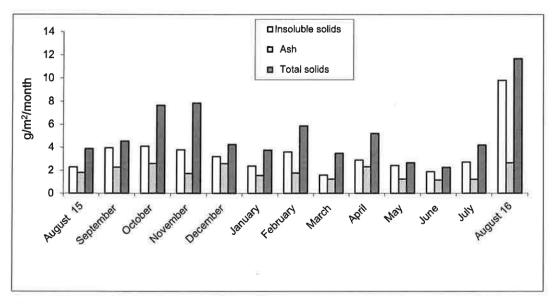
149876

Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble	Ash	Total
	solids		solids
August 15	1.66	0.94	3.04
September	2.97	1.75	3.65
October	2.59	2.09	4.91
November	2.65	1.06	4.14
December	1.77	1.47	2.42
January	2.05	1.86	3.48
February	1.84	1.11	4.06
March	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August 16	6.86	1.59	7.18

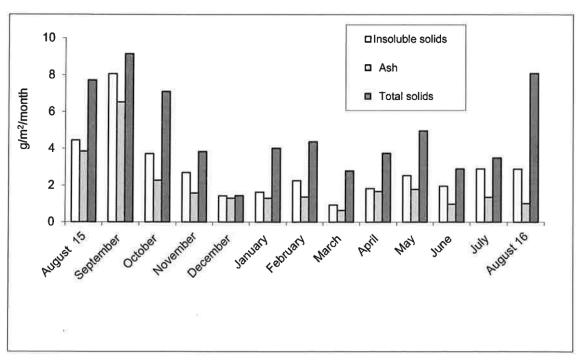
^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 2 Hitchcock Road


	Insoluble solids	Ash	Total solids
August 15	2.33	1.56	2.99
September	3.99	2.53	5.44
October	2.78	1.97	5.98
November	2.65	1.61	4.27
December	1.87	1.73	2.30
January	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August 16	3.03	1.81	8.06

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 3 Jurd's House


	Insoluble solids	Ash	Total solids
August 15	2.29	1.80	3.87
September	3.96	2.28	4.55
October	4.10	2.60	7.65
November	3.79	1.73	7.85
December	3.21	2.59	4.25
January	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August 16	9.82	2.64	11.68

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 4 Lot 2 DP 510812

	Insoluble solids	Ash	Total solids
August 15	4.44	3.84	7.71
September	8.06	6.52	9.14
October	3.71	2.27	7.09
November	2.68	1.57	3.82
December	1.42	1.29	1.43
January	1.62	1.29	4.01
February	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August 16	2.88	1.00	8.09

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT: Gravimetric Dust Monitoring at Maroota for September 2016

FILE No: 250 / 16

REQUEST No.: 69773

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

Lab Sample Number: Site Location Number:	183511 1	183512 2	183513 3	183514 4
Sample Description:		Du	ıst	
Sampling Period:	From	1.09.16	to	4.10.16
TEST RESULTS				
Insoluble Solids (g/m² month)	1.80	2.44	5.50	2.40
Ash (g/m² month)	1.32	1.41	2.41	1.43
Combustible Matter (g/m² month)	0.48	1.03	3.09	0.96
Soluble Matter (g/m² month)	2.08	1.96	3.85	1.88
Total Solids (g/m² month)	3.88	4.39	9.35	4.28
Volume of Liquid in the Gauge (ml)	900	1000	800	1000

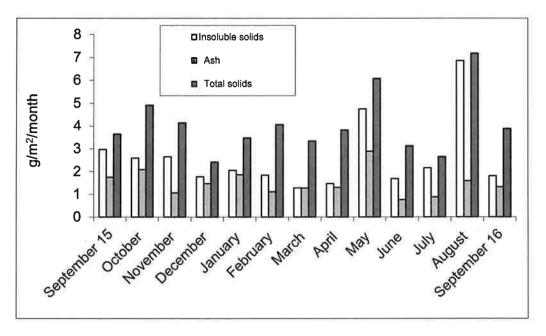
Notes:

- Refer to attached graphs.
- Samples submitted by the Client.
- The samples collected were not covering the period as stipulated in the test method. Calculations based on 33 days of exposure.

J.Graham, Mat. File, File

Approved Signatory

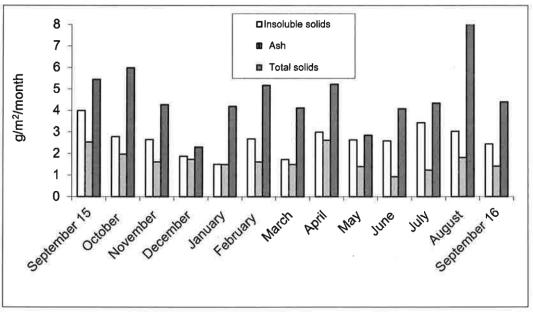
M. Abdulnebe


150679

NATA Accredited Laboratory

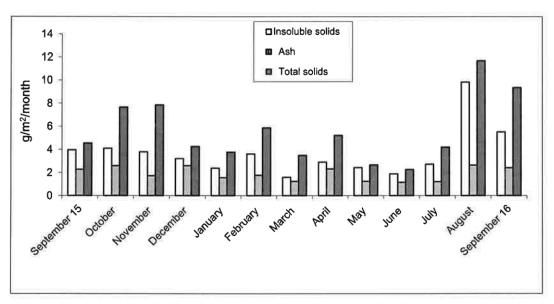
Number: 9968

Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble solids	Ash	Total solids
September 15	2.97	1.75	3.65
October	2.59	2.09	4.91
November	2.65	1.06	4.14
December	1.77	1.47	2.42
January	2.05	1.86	3.48
February	1.84	1.11	4.06
March	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September 16	1.80	1.32	3.88

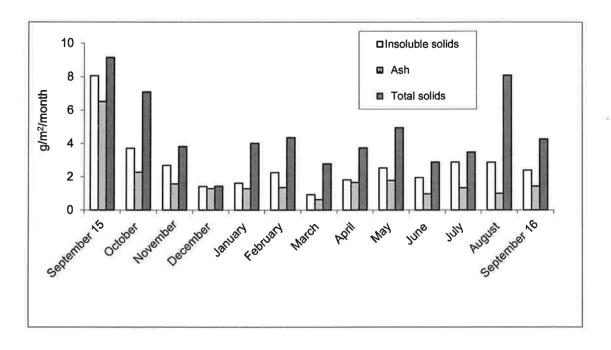
^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 2 Hitchcock Road


	Insoluble solids	Ash	Total solids
September 15	3.99	2.53	5.44
October	2.78	1.97	5.98
November	2.65	1.61	4.27
December	1.87	1.73	2.30
January	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September 16	2.44	1.41	4.39

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 3 Jurd's House


	Insoluble solids	Ash	Total solids
September 15	3.96	2.28	4.55
October	4.10	2.60	7.65
November	3.79	1.73	7.85
December	3.21	2.59	4.25
January	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September 16	5.50	2.41	9.35

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Dust Monitoring MAROOTA Site 4 Lot 2 DP 510812

	Insoluble solids	Ash	Total solids
September 15	8.06	6.52	9.14
October	3.71	2.27	7.09
November	2.68	1.57	3.82
December	1.42	1.29	1.43
January	1.62	1.29	4.01
February	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September 16	2.40	1.43	4.28

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT:

Gravimetric Dust Monitoring at Maroota for October 2016

FILE No: 250 / 16

REQUEST No.: 70139

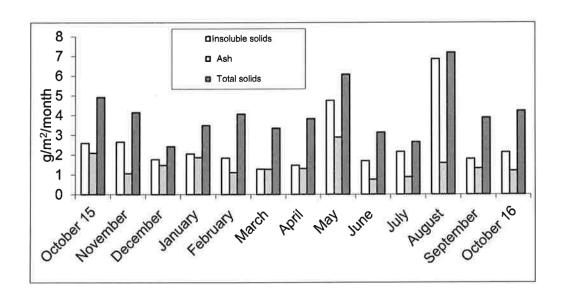
TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 – Determination of Particulate Matter - Deposited Matter – Gravimetric Method

Lab Sample Number:	184430	184431	184432	184433
Site Location Number:	1	2	3	4
Sample Description:		Dι	ust	
Sampling Period:	From	4.10.16	to	1.11.16
TEST RESULTS:				
Insoluble Solids (g/m² month)	2.13	1.89	3.55	3.62
Ash (g/m² month)	1.20	1.18	2.01	2.18
Combustible Matter (g/m² month)	0.93	0.71	1.54	1.44
Soluble Matter (g/m² month)	2.09	2.20	2.15	2.11
Total Solids (g/m² month)	4.22	4.09	5.70	5.73
Volume of Liquid in the Gauge (ml)	800	900	800	1100

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

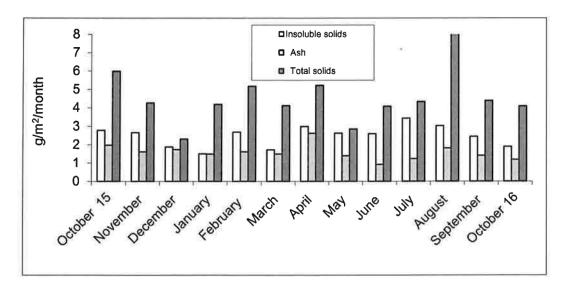
J.Graham, Mat. File, File.


Date _____9.//. /6 . ____ Serial No. _____ 15 1 5 6 5

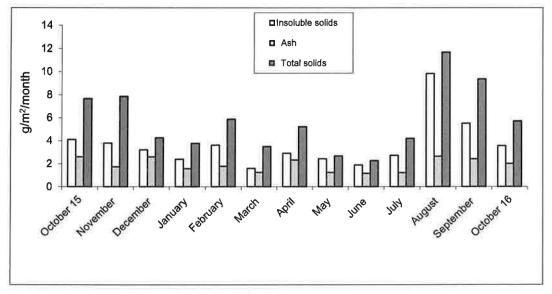
NATA Accredited Laboratory

Number: 9968

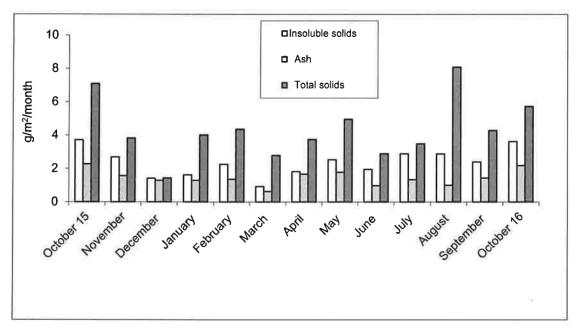
Dust Monitoring MAROOTA Site 1 Maroota Public School


Insoluble solids	Ash	Total solids
2.59	2.09	4.91
2.65	1.06	4.14
1.77	1.47	2.42
2.05	1.86	3.48
1.84	1.11	4.06
1.28	1.27	3.34
1.47	1.30	3.82
4.75	2.89	6.08
1.69	0.76	3.13
2.16	88.0	2.65
6.86	1.59	7.18
1.80	1.32	3.88
2.13	1.20	4.22
	solids 2.59 2.65 1.77 2.05 1.84 1.28 1.47 4.75 1.69 2.16 6.86 1.80	solids 2.59 2.09 2.65 1.06 1.77 1.47 2.05 1.86 1.84 1.11 1.28 1.27 1.47 1.30 4.75 2.89 1.69 0.76 2.16 0.88 6.86 1.59 1.80 1.32

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

£	Insoluble solids	Ash	Total solids
October 15	2.78	1.97	5.98
November	2.65	1.61	4.27
December	1.87	1.73	2.30
January	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October 16	1.89	1.18	4.09


* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble	Ash	Total
	solids		solids
October 15	4.10	2.60	7.65
November	3.79	1.73	7.85
December	3.21	2.59	4.25
January	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October 16	3.55	2.01	5.70

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
October 15	3.71	2.27	7.09
November	2.68	1.57	3.82
December	1.42	1.29	1.43
January	1.62	1.29	4.01
February	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October 16	3.62	2.18	5.73

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT:

Gravimetric Dust Monitoring at Maroota for November 2016

FILE No: 250 / 16

REQUEST No.: 70568

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 – Determination of Particulate Matter - Deposited Matter – Gravimetric Method

Lab Sample Number:	185402	185403	185404	185405
Site Location Number:	1	2	3	4
Sample Description:		Dι	ıst	
Sampling Period:	From	1.11.16	to	1.12.16
TEST RESULTS:				
Insoluble Solids (g/m² month)	3.09	3.43	3.64	3.74
Ash (g/m² month)	1.96	2.09	2.20	2.12
Combustible Matter (g/m² month)	1.12	1.34	1.45	1.63
Soluble Matter (g/m² month)	1.93	1.59	2.28	2.10
Total Solids (g/m² month)	5.01	5.02	5.92	5.85
Volume of Liquid in the Gauge (ml)	1600	1500	1250	1600

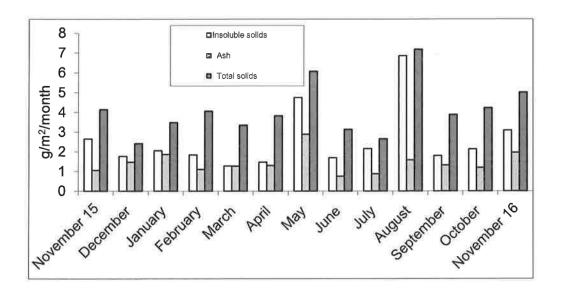
Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

J.Graham, Mat. File, File.

S.Krishnamoorthy

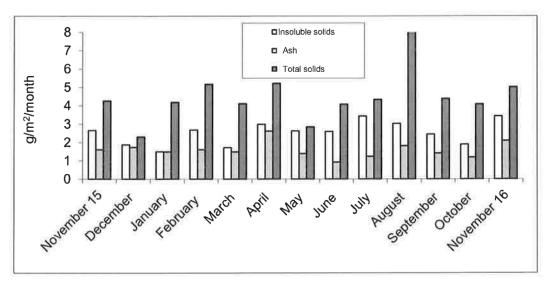
Approved Signatory (Ldhai)


Date 7/2/6. Serial No. 152367

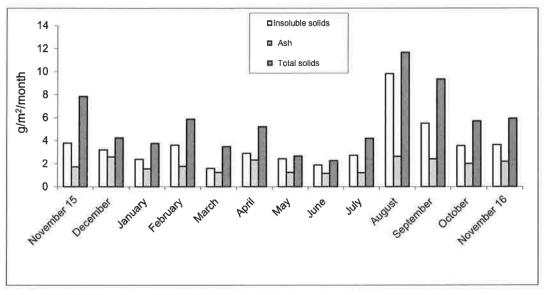
NATA Accredited Laboratory

Number: 9968

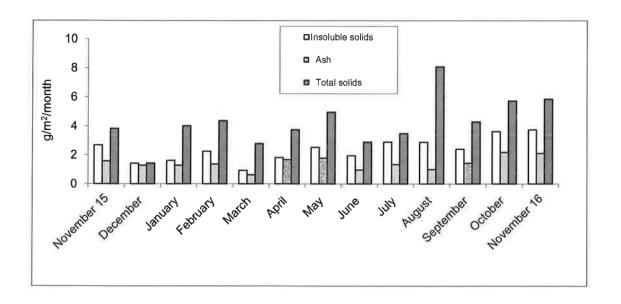
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble	Ash	Total
	solids		solids
November 15	2.65	1.06	4.14
December	1.77	1.47	2.42
January	2.05	1.86	3.48
February	1.84	1.11	4.06
March	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November 16	3.09	1.96	5.01

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

	Insoluble solids	Ash	Total solids
November 15	2.65	1.61	4.27
December	1.87	1.73	2.30
January	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October	1.89	1.18	4.09
November 16	3.43	2.09	5.02


* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble	Ash	Total
	solids		solids
November 15	3.79	1.73	7.85
December	3.21	2.59	4.25
January	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November 16	3.64	2.20	5.92

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

solids	71011	Total solids
2.68	1.57	3.82
1.42	1.29	1.43
1.62	1.29	4.01
2.25	1.36	4.36
0.93	0.63	2.78
1.82	1.67	3.74
2.53	1.78	4.95
1.95	0.97	2.89
2.89	1.34	3.48
2.88	1.00	8.09
2.40	1.43	4.28
3.62	2.18	5.73
3.74	2.12	5.85
	2.68 1.42 1.62 2.25 0.93 1.82 2.53 1.95 2.89 2.88 2.40 3.62	2.68 1.57 1.42 1.29 1.62 1.29 2.25 1.36 0.93 0.63 1.82 1.67 2.53 1.78 1.95 0.97 2.89 1.34 2.88 1.00 2.40 1.43 3.62 2.18

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

FILE No: 250 / 17

PROJECT: Gravimetric Dust Monitoring at Maroota for December 2016

REQUEST No.: 71078

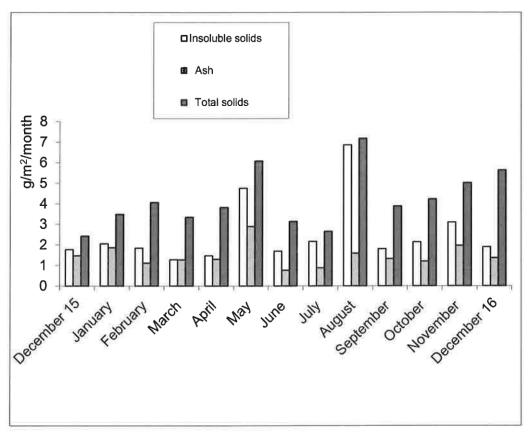
TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

Lab Sample Number:	186762	186763	186764	186765
Site Location Number:	1	2	3	4
Sample Description:		Dι	ust	
Sampling Period:	From	1.12.16	to	3.01.17
TEST RESULTS:				
Insoluble Solids (g/m² month)	1.89	1.92	2.91	2.24
Ash (g/m² month)	1.36	1.59	2.06	1.37
Combustible Matter (g/m² month)	0.53	0.34	0.86	0.87
Soluble Matter (g/m² month)	3.74	4.10	3.86	4.67
Total Solids (g/m² month)	5.63	6.02	6.77	6.91
Volume of Liquid in the Gauge (ml)	1300	1600	1300	1450

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.
- The samples collected were not covering the period as stipulated in the test method. Calculations based on 33 days of exposure

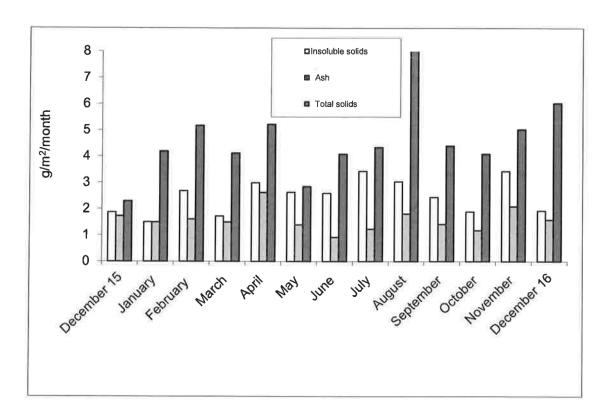
J.Graham, Mat. File, File.


Approved Signatory S.Krishnamoorthy 153303

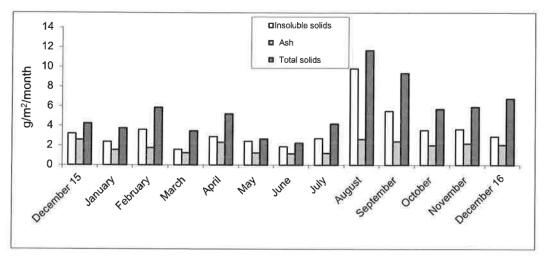
NATA Accredited Laboratory

Number: 9968

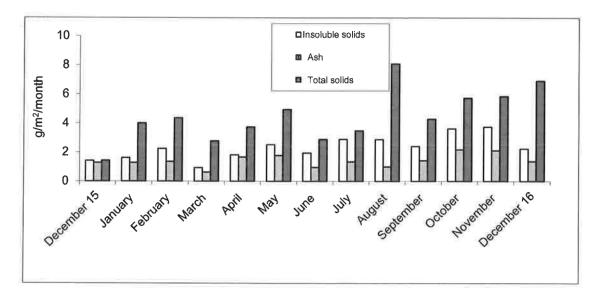
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble solids	Ash	Total solids
December 15	1.77	1.47	2.42
January	2.05	1.86	3.48
February	1.84	1.11	4.06
March	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December 16	1.89	1.36	5.63

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Alr Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

	Insoluble solids	Ash	Total solids
December 15	1.87	1.73	2.30
January	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October	1.89	1.18	4.09
November	3.43	2.09	5.02
December 16	1.92	1.59	6.02


^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
December 15	3.21	2.59	4.25
January	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November	3.64	2.2	5.92
December 16	2.91	2.06	6.77

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
December 15	1.42	1.29	1.43
January	1.62	1.29	4.01
February	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October	3.62	2.18	5.73
November	3.74	2.12	5.85
December 16	2.24	1.37	6.91

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT:

Gravimetric Dust Monitoring at Maroota for January 2017

FILE No: 250 / 17

REQUEST No.:71359

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 – Determination of Particulate Matter - Deposited Matter - Gravimetric Method

187538	187539	187540	187541
1	2	3	4
	Dι	ıst	
From	3.01.17	to	1.02.17
3.90	5.03	4.49	4.50
1.95	2.48	2.45	1.82
1.95	2.54	2.04	2.68
3.97	7.14	3.08	4.51
7.87	12.17	7.57	9.01
1300	1300	800	1300
	1 From 3.90 1.95 1.95 3.97 7.87	1 2 Du From 3.01.17 3.90 5.03 1.95 2.48 1.95 2.54 3.97 7.14 7.87 12.17	1 2 3 Dust From 3.01.17 to 3.90 5.03 4.49 1.95 2.48 2.45 1.95 2.54 2.04 3.97 7.14 3.08 7.87 12.17 7.57

Notes:

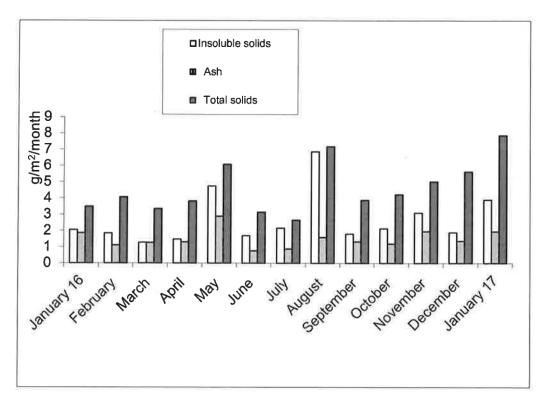
- Refer to attached graphs.
- Samples submitted by the Client.

J.Graham, Mat. File, File.

Approved Signatory_

M. Abdulnebe

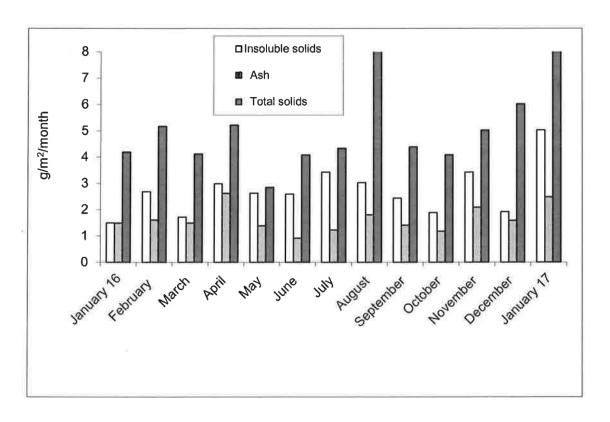
Date 9.02.17 Serial No.


153751

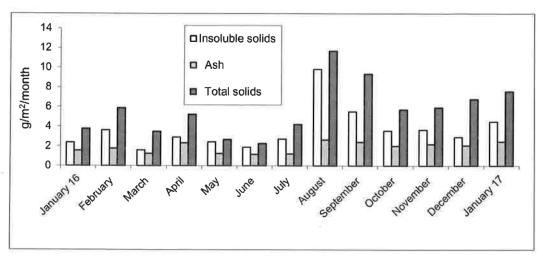
NATA Accredited Laboratory

Number: 9968

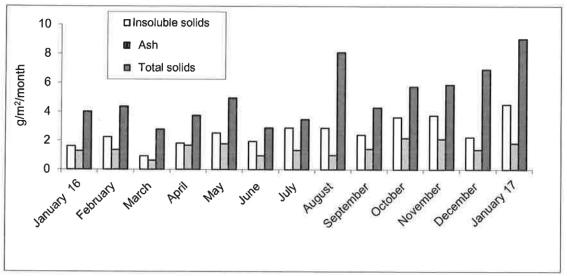
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble solids	Ash	Total solids
January 16	2.05	1.86	3.48
February	1.84	1.11	4.06
March	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December	1.89	1.36	5.63
January 17	3.90	1.95	7.87

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

	Insoluble solids	Ash	Total solids
January 16	1.50	1.49	4.19
February	2.68	1.61	5.17
March	1.72	1.49	4.12
April	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October	1.89	1.18	4.09
November	3.43	2.09	5.02
December	1.92	1.59	6.02
January 17	5.03	2.48	12.17


* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble	Ash	Total
	solids		solids
January 16	2.38	1.56	3.76
February	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November	3.64	2.2	5.92
December	2.91	2.06	6.77
January 17	4.49	2.45	7.57

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
January 16	1.62	1.29	4.01
February	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October	3.62	2.18	5.73
November	3.74	2.12	5.85
December	2.24	1.37	6,91
January 17	4.50	1.82	9.01

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT: Gravimetric Dust Monitoring at Maroota for February 2017

FILE No: 250 / 17

REQUEST No.:71978

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

Lab Sample Number:	189265	189266	189267	189268
Site Location Number:	1	2	3	4
Sample Description:		Dι	ıst	
Sampling Period:	From	1.02.17	to	1.03.17
TEST RESULTS:				
Insoluble Solids (g/m² month)	2.00	4.13	2.12	1.90
Ash (g/m² month)	1.20	2.57	1.58	1.21
Combustible Matter (g/m² month)	0.80	1.56	0.54	0.69
Soluble Matter (g/m² month)	1.29	3.06	1.45	0.82
Total Solids (g/m² month)	3.29	7.19	3.57	2.73
Volume of Liquid in the Gauge (ml)	2100	2200	2200	2200

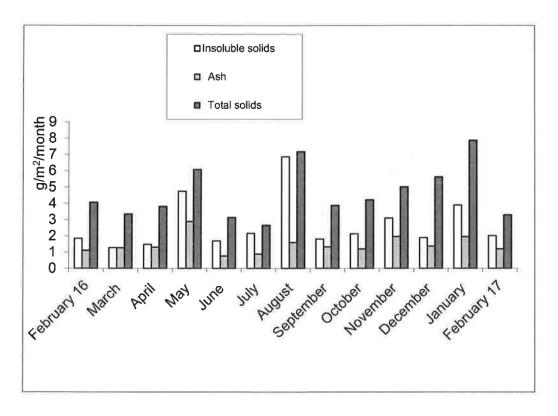
Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

J.Graham, Mat. File, File.

S. Krishnamoorthy

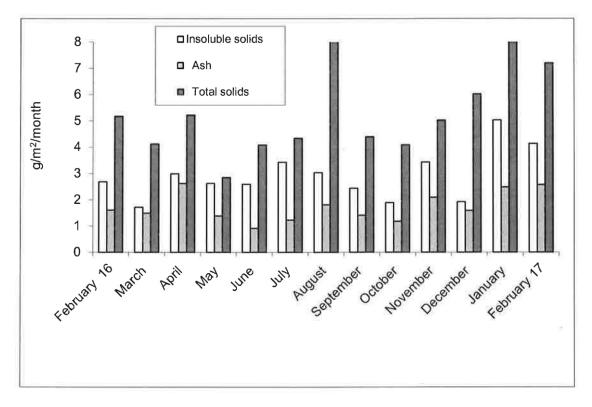
Serial No.


154983

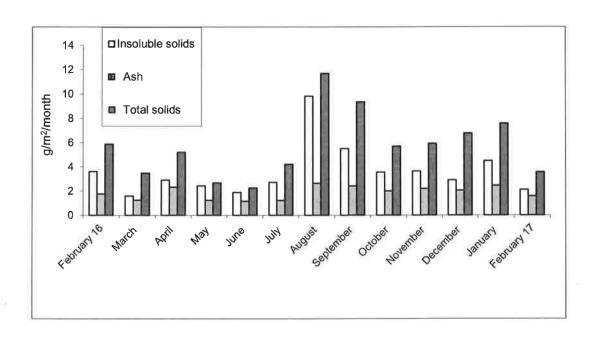
NATA Accredited Laboratory

Number: 9968

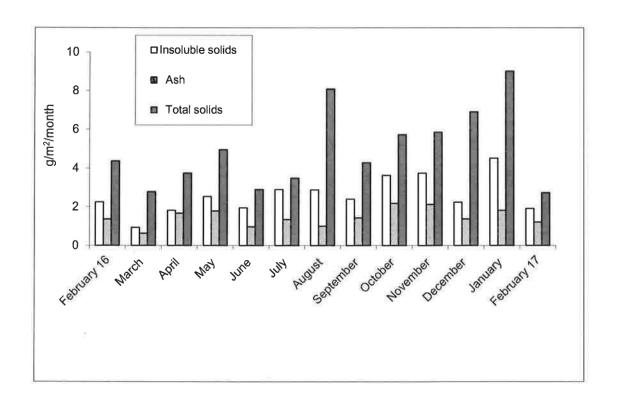
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble	Ash	Total
	solids		solids
February 16	1.84	1.11	4.06
March	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December	1.89	1.36	5.63
January	3.90	1.95	7.87
February 17	2.00	1.20	3.29

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

olids
5.17
4.12
5.22
2.85
4.08
4.34
8.06
4.39
4.09
5.02
6.02
2.17
7.19
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜


* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble	Ash	Total
	solids		solids
February 16	3.61	1.77	5.87
March	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November	3.64	2.2	5.92
December	2.91	2.06	6.77
January	4.49	2.45	7.57
February 17	2.12	1.58	3.57

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
February 16	2.25	1.36	4.36
March	0.93	0.63	2.78
April	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October	3.62	2.18	5.73
November	3.74	2.12	5.85
December	2.24	1.37	6.91
January	4.50	1.82	9.01
February 17	1.90	1.21	2.73

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT: Gravimetric Dust Monitoring at Maroota for March 2017

FILE No: 250 / 17

REQUEST No.:72409

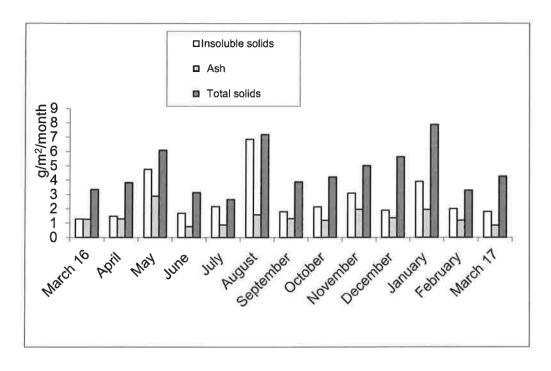
TEST PROCEDURE: AS 3580.10.1 - 2003 - Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

Lab Sample Number: Site Location Number:	190495 1	190496 2	190497 3	190498 4
Sample Description:		_	ıst	
Sampling Period:	From	1.03.17	to	3.04.17
TEST RESULTS:				
Insoluble Solids (g/m² month)	1.79	0.81	1.43	1.68
Ash (g/m² month)	0.84	0.43	0.71	0.75
Combustible Matter (g/m² month)	0.95	0.39	0.72	0.93
Soluble Matter (g/m² month)	2.47	0.85	1.47	1.65
Total Solids (g/m² month)	4.26	1.66	2.90	3.33
Volume of Liquid in the Gauge (ml)	5000	5000	5000	5000

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.
- The samples collected were not covering the period as stipulated in the test method. Calculations based on 33 days of exposure

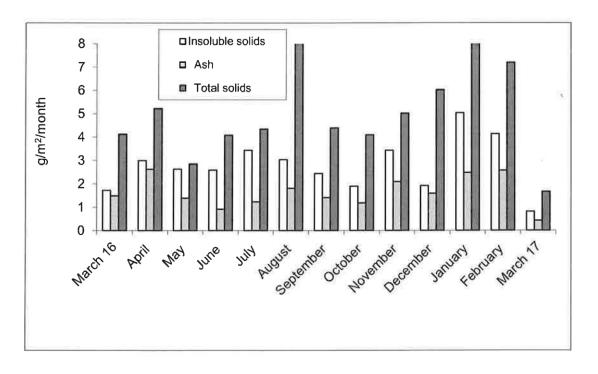
J.Graham, Mat. File, File.


S. Krishnamoorthy Approved Signatory 155805 Serial No.

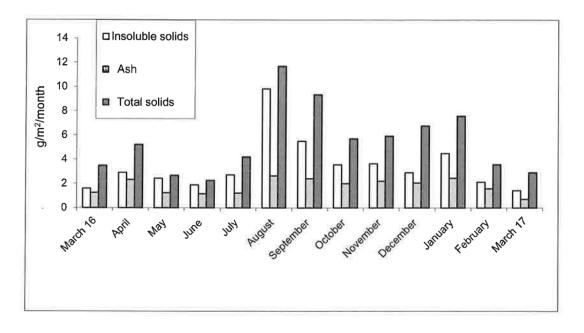
NATA Accredited Laboratory

Number: 9968

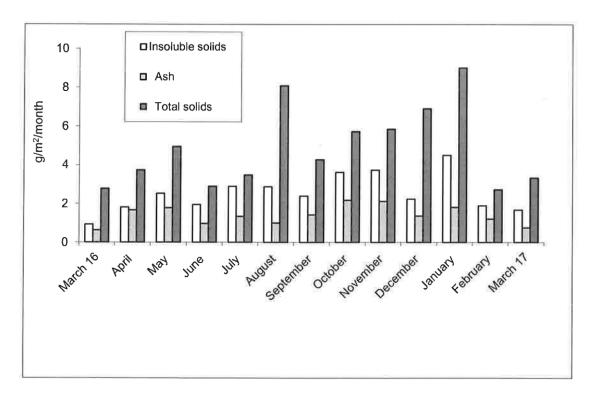
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble	Ash	Total
	solids		solids
March 16	1.28	1.27	3.34
April	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December	1.89	1.36	5.63
January	3.90	1.95	7.87
February	2.00	1.20	3.29
March 17	1.79	0.84	4.26

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

Total solids
4.12
5.22
2.85
4.08
4.34
8.06
4.39
4.09
5.02
6.02
12.17
7.19
1.66


* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble	Ash	Total
	solids		solids
March 16	1.59	1.25	3.48
April	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November	3.64	2.2	5.92
December	2.91	2.06	6.77
January	4.49	2.45	7.57
February	2.12	1.58	3.57
March 17	1.43	0.71	2.90

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Insoluble solids	Ash	Total solids
0.93	0.63	2.78
1.82	1.67	3.74
2.53	1.78	4.95
1.95	0.97	2.89
2.89	1.34	3.48
2.88	1.00	8.09
2.40	1.43	4.28
3.62	2.18	5.73
3.74	2.12	5.85
2.24	1.37	6.91
4.50	1.82	9.01
1.90	1.21	2.73
1.68	0.75	3.33
	0.93 1.82 2.53 1.95 2.89 2.88 2.40 3.62 3.74 2.24 4.50 1.90	0.93 0.63 1.82 1.67 2.53 1.78 1.95 0.97 2.89 1.34 2.88 1.00 2.40 1.43 3.62 2.18 3.74 2.12 2.24 1.37 4.50 1.82 1.90 1.21

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT:

Gravimetric Dust Monitoring at Maroota for April 2017

FILE No: 250 / 17

REQUEST No.:72947

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 – Determination of Particulate Matter - Deposited Matter - Gravimetric Method

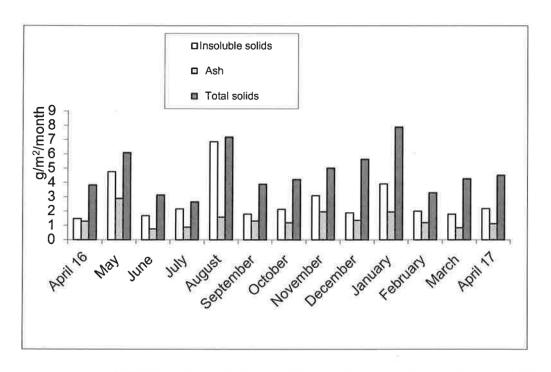
Lab Sample Number: Site Location Number:	191749 1	191750 2	191751 3	191752 4
Sample Description:	_	Du		4.05.47
Sampling Period:	From	3.04.17	to	1.05.17
TEST RESULTS:				
Insoluble Solids (g/m² month)	2.18	2.40	1.75	1.59
Ash (g/m² month)	1.12	1.42	1.36	0.95
Combustible Matter (g/m² month)	1.06	0.98	0.39	0.65
Soluble Matter (g/m² month)	2.32	2.03	2.55	1.57
Total Solids (g/m² month)	4.50	4.43	4.30	3.16
Volume of Liquid in the Gauge (ml)	800	800	800	800

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

Accredited for compliance with ISO/IEC 17025

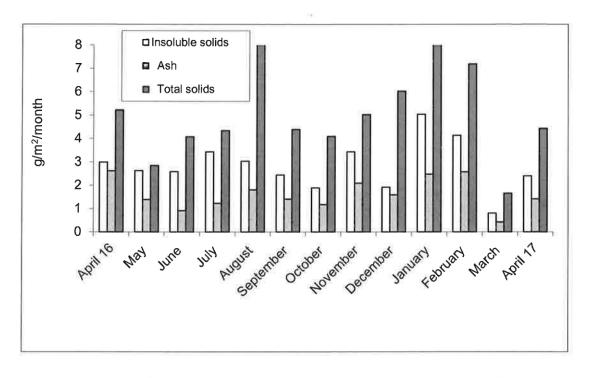
J.Graham, Mat. File, File.



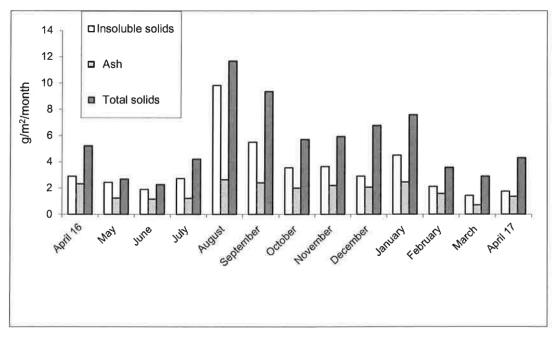
Approved Signatory Udha S. Krishnamoorthy

Date 11.5.17. Serial No. 156991

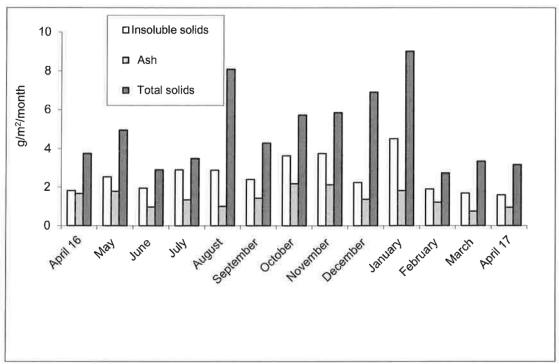
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble	Ash	Total
	solids		solids
April 16	1.47	1.30	3.82
May	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December	1.89	1.36	5.63
January	3.90	1.95	7.87
February	2.00	1.20	3.29
March	1.79	0.84	4.26
April 17	2.18	1.12	4.50

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

	Insoluble solids	Ash	Total solids
April 16	2.99	2.62	5.22
May	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October	1.89	1.18	4.09
November	3.43	2.09	5.02
December	1.92	1.59	6.02
January	5.03	2.48	12.17
February	4.13	2.57	7.19
March	0.81	0.43	1.66
April 17	2.40	1.42	4.43


^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble	Ash	Total
	solids		solids
April 16	2.90	2.32	5.21
May	2.43	1.24	2.67
June	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November	3.64	2.2	5.92
December	2.91	2.06	6.77
January	4.49	2.45	7.57
February	2.12	1.58	3.57
March	1.43	0.71	2.90
April 17	1.75	1.36	4.30

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
April 16	1.82	1.67	3.74
May	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October	3.62	2.18	5.73
November	3.74	2.12	5.85
December	2.24	1.37	6.91
January	4.50	1.82	9.01
February	1.90	1.21	2.73
March	1.68	0.75	3.33
April 17	1.59	0.95	3.16

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (1) Feb. 2014 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT: Gravimetric Dust Monitoring at Maroota for May 2017

FILE No: 250 / 17

REQUEST No.:73454

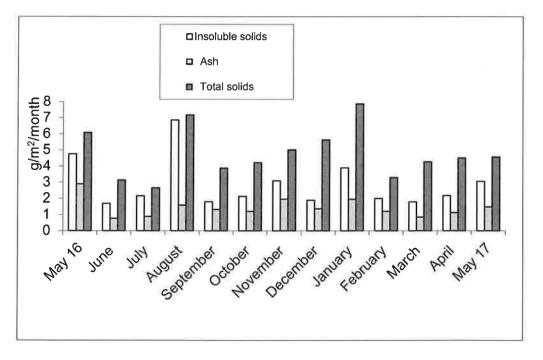
TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 - Determination of Particulate Matter - Deposited Matter - Gravimetric Method

Lab Sample Number:	192943	192944	192945	192946
Site Location Number:	1	2	3	4
Sample Description:		Dι	ıst	
Sampling Period:	From	1.05.17	to	1.06.17
TEST RESULTS:				
Insoluble Solids (g/m² month)	3.05	2.13	2.84	2.09
Ash (g/m² month)	1.48	1.16	1.55	1.12
Combustible Matter (g/m² month)	1.57	0.97	1.29	0.97
Soluble Matter (g/m² month)	1.52	0.50	1.18	1.24
Total Solids (g/m² month)	4.56	2.63	4.02	3.33
Volume of Liquid in the Gauge (ml)	600	600	700	500

Notes:

- Refer to attached graphs.
- Samples submitted by the Client.

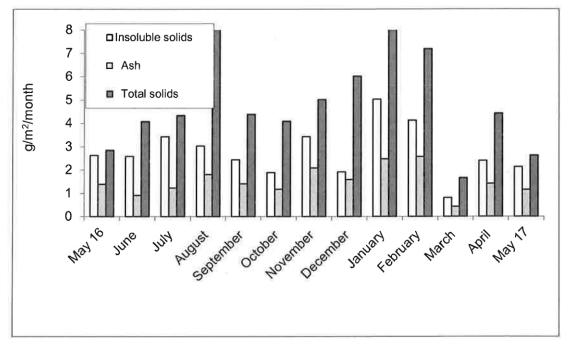
J.Graham, Mat. File, File,


S. Krishnamoorthy Approved Signatory 158093 Serial No.

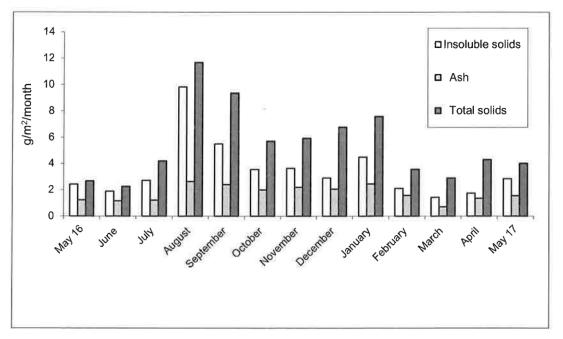
NATA Accredited Laboratory

Number: 9968

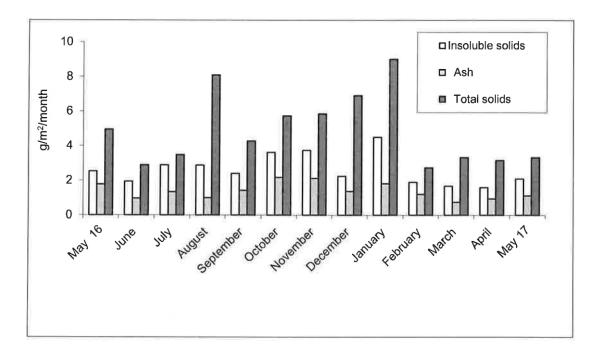
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble	Ash	Total
	solids		solids
May 16	4.75	2.89	6.08
June	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December	1.89	1.36	5.63
January	3.90	1.95	7.87
February	2.00	1.20	3.29
March	1.79	0.84	4.26
April	2.18	1.12	4.50
May 17	3.05	1.48	4.56

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

	Insoluble solids	Ash	Total solids
May 16	2.63	1.39	2.85
June	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October	1.89	1.18	4.09
November	3.43	2.09	5.02
December	1.92	1.59	6.02
January	5.03	2.48	12.17
February	4.13	2.57	7.19
March	0.81	0.43	1.66
April	2.40	1.42	4.43
May 17	2.13	1.16	2.63


^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Insoluble solids	Ash	Total solids
2.43	1.24	2.67
1.89	1.16	2.26
2.72	1.22	4.20
9.82	2.64	11.68
5.50	2.41	9.35
3.55	2.01	5.70
3.64	2.2	5.92
2.91	2.06	6.77
4.49	2.45	7.57
2.12	1.58	3.57
1.43	0.71	2.90
1.75	1.36	4.30
2.84	1.55	4.02
	solids 2.43 1.89 2.72 9.82 5.50 3.55 3.64 2.91 4.49 2.12 1.43 1.75	solids 2.43 1.24 1.89 1.16 2.72 1.22 9.82 2.64 5.50 2.41 3.55 2.01 3.64 2.2 2.91 2.06 4.49 2.45 2.12 1.58 1.43 0.71 1.75 1.36

* NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
May 16	2.53	1.78	4.95
June	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October	3.62	2.18	5.73
November	3.74	2.12	5.85
December	2.24	1.37	6.91
January	4.50	1.82	9.01
February	1.90	1.21	2.73
March	1.68	0.75	3.33
April	1.59	0.95	3.16
May 17	2.09	1.12	3.33

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

Page 1 of 1

Report Template - Rev. (2) April 2017 - Authorised by M.A.

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

FILE No: 250 / 17

TEST REPORT

CLIENT:

P.F. FORMATION

1774 Wisemans Ferry Road Maroota NSW 2756

PROJECT:

Gravimetric Dust Monitoring at Maroota for June 2017

REQUEST No.:73900

TEST PROCEDURE: AS 3580.10.1 – 2003 – Methods for Sampling and Analysis of Ambient Air Method 10.1 – Determination of Particulate Matter - Deposited Matter – Gravimetric Method

Lab Sample Number:	194063	194064	194065	194066
Site Location Number:	1	2	3	4
Sample Description:		D	ust	
Sampling Period:	From	1.06.17	to	3.07.17
TEST RESULTS:				
Insoluble Solids (g/m² month)	1.63	2.16	3.32	1.38
Ash (g/m² month)	0.91	1.42	2.10	0.88
Combustible Matter (g/m² month)	0.72	0.75	1.23	0.51
Soluble Matter (g/m² month)	0.95	0.86	2.62	0.56
Total Solids (g/m² month)	2.58	3.02	5.94	1.95
Volume of Liquid in the Gauge (ml)	2200	2200	2200	2300

Notes:

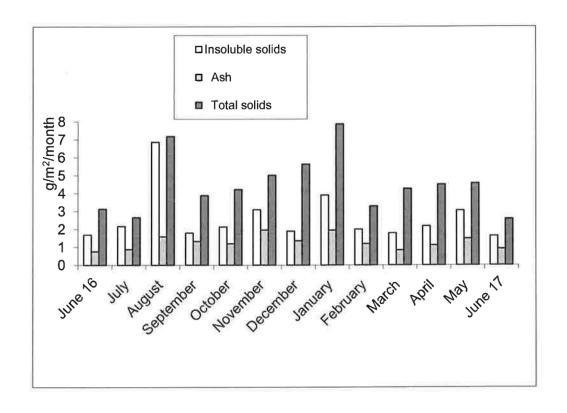
- Refer to attached graphs.
- Samples submitted by the Client.

J.Graham, Mat. File, File.

Approved Signatory

Serial No.

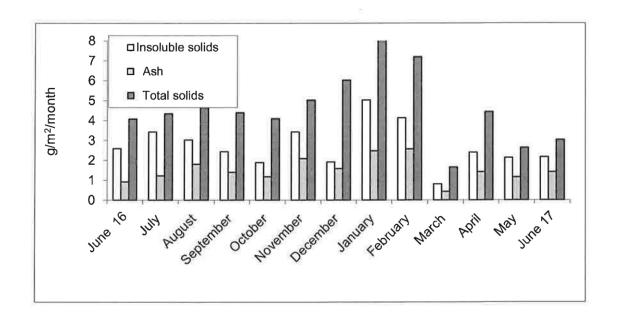
M. Abdulnebe


159000

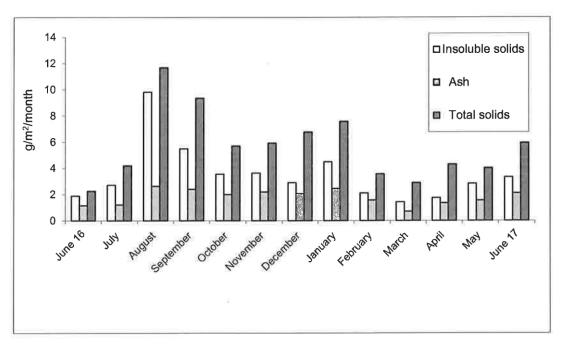
NATA Accredited Laboratory

Number: 9968

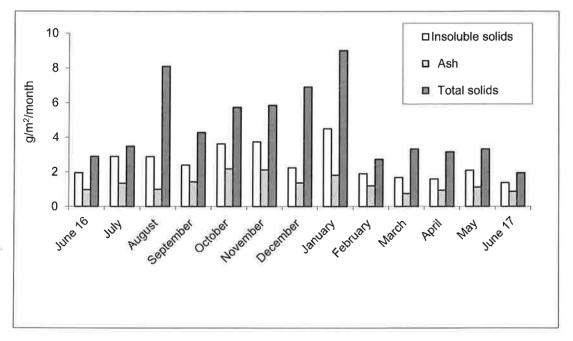
Dust Monitoring MAROOTA Site 1 Maroota Public School


	Insoluble solids	Ash	Total solids
June 16	1.69	0.76	3.13
July	2.16	0.88	2.65
August	6.86	1.59	7.18
September	1.80	1.32	3.88
October	2.13	1.20	4.22
November	3.09	1.96	5.01
December	1.89	1.36	5.63
January	3.90	1.95	7.87
February	2.00	1.20	3.29
March	1.79	0.84	4.26
April	2.18	1.12	4.50
May	3.05	1.48	4.56
June 17	1.63	0.91	2.58

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)


Dust Monitoring MAROOTA Site 2 Hitchcock Road

	Insoluble solids	Ash	Total solids
June 16	2.59	0.92	4.08
July	3.43	1.23	4.34
August	3.03	1.81	8.06
September	2.44	1.41	4.39
October	1.89	1.18	4.09
November	3.43	2.09	5.02
December	1.92	1.59	6.02
January	5.03	2.48	12.17
February	4.13	2.57	7.19
March	0.81	0.43	1.66
April	2.40	1.42	4.43
May	2.13	1.16	2.63
June 17	2.16	1.42	3.02


^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
June 16	1.89	1.16	2.26
July	2.72	1.22	4.20
August	9.82	2.64	11.68
September	5.50	2.41	9.35
October	3.55	2.01	5.70
November	3.64	2.2	5.92
December	2.91	2.06	6.77
January	4.49	2.45	7.57
February	2.12	1.58	3.57
March	1.43	0.71	2.90
April	1.75	1.36	4.30
May	2.84	1.55	4.02
June 17	3.32	2.10	5.94

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)

	Insoluble solids	Ash	Total solids
June 16	1.95	0.97	2.89
July	2.89	1.34	3.48
August	2.88	1.00	8.09
September	2.40	1.43	4.28
October	3.62	2.18	5.73
November	3.74	2.12	5.85
December	2.24	1.37	6.91
January	4.50	1.82	9.01
February	1.90	1.21	2.73
March	1.68	0.75	3.33
April	1.59	0.95	3.16
May	2.09	1.12	3.33
June 17	1.38	0.88	1.95

^{*} NSW-EPA - Approved Methods and Guidance- For the Modelling and Assessment of Air Pollutants in New South Wales - AUGUST 2005 (pg 28)