

PF Formation Pty Ltd

Groundwater Report Hitchcock Road Site, Maroota, NSW Annual Groundwater Management Plan 2022 - 2023

Report E2W-0224 R004 (v1)

11 September 2023

Prepared by: Dino Parisotto (Director)

BAppSc-Geology (Hons); MAppSc-Groundwater Phone: (02) 4234 0829 Mobile 0422334102 175 Fern St Gerringong NSW Australia 2534

This document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. This document should not be used or copied without written permission from Earth2Water Pty Ltd.

175 Fern Street Gerringong NSW 2534 Phone (02) 4234 0829 Mobile 0422 334102

Client: PF Formation Pty Ltd

Project: Annual Groundwater Report 2022-2023 Hitchcock Road Site, Maroota

> Prepared for: Josh Graham PF Formation Pty Ltd 1774 Wisemans Ferry Road Maroota, NSW, 2756

Report: 11 September 2023 Ref: E2W-224 R004 (v1)

Authorised by: Earth2Water Pty Ltd

Dino Parisotto - Director

BAppSc Geology (Hons); MAppSc (Groundwater); Lic Driller C3, DL1977 CEnvP Certified Environmental Practitioner; Site Contamination Specialist (SC40118)

> Office: 175 Fern Street, Gerringong, NSW, 2534 Phone: (02) 4234 0829 Email: dino@earth2water.com.au

> > Reports Distributed and Authorised for:

PF Formation Pty Ltd: report - electronic copy (pdf)
© Authorisation from Earth2Water Pty Ltd is required for third party use and distribution

TABLE OF CONTENTS

1	Introduc	tion	4
2	Groundy	vater and surface water Monitoring Network	5
2.1		e Water Monitoring	
2.2		oring Bore PF167MW1	
2.3		oring Bore PF166MW1	
2.4		oring Bore PFP214MW1	
2.5		oring Bore PFL2HitchMW1	
2.6		Monitoring Bores (2017-2019)	
2.7		1 167 Dam	
2.7		Water Dam (Portion 167)	
_			
2.9	Portion	1 198 Water Supply Bores	13
3		vater Data Assessment	
3.1		Monitoring Wells	
3.2		dwater Levels	
3.3	Bore P	F167MW1	15
3.4	Bore P	F166MW1	16
3.5	Bore P	FP214MW1	16
3.6	Bore P	FL2HitchMW1	17
3.7	Portion	n 167 Spring	18
3.8	Clean	Water Dam (CWD in Portion 167)	19
3.9	Water	Supply Bores (PB1 & PB2/PB3 at Lot 198)	20
3.10	Water	Quality	20
3.11	Quality	y Control	22
4	Conclusi	ions	22
Figu		Gita I anation (III along In D.1 (2022)	
Figur	re 1 re 1A	Site Location - Hitchcock Rd (2023) Site Layout & Water Storages (2023)	
Figu		Site Layout & Water Storages (2023) Site Layout & Groundwater Monitoring Well Network (2023)	
Figu		Site Plan & Inferred Groundwater Flow Regime (August 2023)	
Figu		Inferred Hydrogeological Section (N-S)	
Figur		Inferred Hydrogeological Section (NW-SE)	
Figu		Site Layout for Lot 198 (2023)	
•		ical Graphs	
Grap		Groundwater Analytical Trends at Bore PF167MW1	
Grap		Groundwater Analytical Trends at Bore PF166MW1	
Grap		Groundwater Analytical Trends at Bore PF214MW1	
Grap		Groundwater Analytical Trends at Bore PFL2HitchMW1	
Grap Grap		Groundwater Analytical Trends at Bore 198PB1 Groundwater Analytical Trends at Bore 198PB2/PB3 (1999 to 2023)	
Grap	11-0	Groundwater Attarytical Trends at Dore 1701 D2/1 D3 (1777 to 2023)	

Hydro-graphs

Figure HG-1 Manual Water Level Gauging at Lot 198 Wells (PB1 & PB2/PB3) 2017 to 2023

		ABN 64 100 859 238
Figure HG-2	Bore PF167MW1 Groundwater Hydrograph (2013 to 2018)	
	Bore PF166MW1 Groundwater Hydrograph (2013 to 2016)	
	Bore PFP214MW1 Groundwater Hydrograph (2013 to 2023)	
_	Bore PFL2HitchMW1 Groundwater Hydrograph (2013 to 2023)	
	Bore PF167MW3D Groundwater Hydrograph (2017 to 2023)	
	Bore PF167MW4D Groundwater Hydrograph (2017 to 2023)	
_	Hitchcock Rd, Monthly Groundwater Levels (2017 to 2023) All Wells	
Figure HG-8B	Hitchcock Rd, Monthly Groundwater Levels (2017 to 2023)	
Figure HG-9	Clean Water Dam Hydrograph (2017 to 2023)	
Figure HG-10	Por167 Dam Hydrograph (2017 to 2020) 1	
	Monthly Groundwater Levels at PF-1,2,3 at 4378 ON Rd (2017-2023)	
	Monthly Groundwater Levels at Pits 8 & 13, and 4378 ON Rd (2017-2023)	
_	B Monthly Groundwater Levels at Pits 8 & 13 (2017-2023)	
8	•	
Tables		
Table 1	Maroota Climate (July 2022 to June 2023)	
Table 2A	Monitoring Wells, Water Level Gauging & Chemistry (15 & 16 August 2023)	
Table 2B	Monitoring Well Details & Water Table Gauging at Pits 8 & 13 (2023)	
Table 3A	Summary of Existing Monitoring Wells (Hitchcock Rd, 2023)	
Table 3B	Summary of New Monitoring Wells (Hitchcock Rd; 2023)	
Table 3C	Summary of New Monitoring Wells at Hitchcock Road- Pits 8 & 13 (2023)	
Table 3-1	Bore PF167MW1 Chemical Analyses Summary	
Table 3-2	Bore PF166 Chemical Analyses Summary	
Table 3-3	Bore PFL2HitchMW1 Chemical Analyses Summary	
Table 3-4	Bore PFP214MW1 Chemical Analyses Summary	
Table 3-5	Bore 198PB1 Chemical Analyses Summary	
Table 3-6A	Bore198PB2 Chemical Analyses Summary	
Table 3-6B	Bore 198PB3 Chemical Analyses Summary	
Table 3-7	Portion 167 Dam Annual Pumpage Records	
Table 3-8	Water Supply Bores Annual Pumpage Records (PB1 & PB2/3)	
Table 3-9A Table 3-9B	Maroota Hitchcock Rd- Water Analyses for New Wells (2017-2023)	
Table 3-9B	Maroota Hitchcock Road- Water Analyses for Dams (2018-2023) Water Analyses for Existing Wells at 4378 ON Rd (2019-2023)	
Table 3-10	Pumping Records for Lot 198 By-wash Dam (2021-2023)	
Table 3-11A	Pumping Records for Por167 Clean Water Dam (2022-2023)	
Table 3-12A	Pumping Records for Lot 198 Clean Water Dam (2022-2023)	
Table 3-13	Maroota Hitchcock Road & Lot 198- Surface Water Analyses for Creeks (2018)	8-2023)
Table 3-14	Groundwater & Surface Water Analyses for New Wells at Pits 8 & 13 (2020-2	
14612 0 1 .	2020 2	o _ e)
Appendices		
Appendix A	Limitations	
Appendix B-1	Analytical Laboratory Certificates (ALS, 2023)	
Appendix B-2	Creek Monitoring Results SEE & Laboratory Reports (29 September 2	2022, 19
11	December 2022, 14 March 2023, 16 June 2023)	
Appendix C	Previous Bore Hydrographs (URS, 2013)	
Appendix D	Monthly Water Level Monitoring (2017 to 2023 @ SEE Pty Ltd)	
	Hitchcock Road Wells (Table F-1), New Wells at Pits 8 & 13 (Table F-2),	
	and Existing wells PF-1,2,3 (Table F-3).	
Appendix E	Piper Trilinear & expanded Durov Hydro-chemical Diagrams (August 2023)	

¹ Logger cable submerged under water and unable to retrieve to download data for Por167dam.

1 INTRODUCTION

Earth2Water Pty Ltd (E2W) was engaged by PF Formation Pty Ltd (PFF) to provide the Annual Groundwater Report (2022-2023) for Hitchcock Road Site, Maroota (Figure 1). The groundwater and surface water sampling² and downloading of data loggers (6) was conducted in consultation and Joshua Graham (PFF) on 15 & 16 August 2023. The ongoing quarterly monitoring of creeks and monthly gauging of groundwater levels was undertaken by Melissa Mass of South East Environmental Pty Ltd (SEE). URS Australia Pty Ltd (URS) was previously (up to 2013) retained by PFF to prepare the groundwater component of the report.

PF Formation Pty Ltd (PFF) is required under the "Project Approval 06_0104 MOD1" conditions set for the Maroota Hitchcock Road property area (Figure 2) to prepare an Annual Review report to Department of Planning and Environment (DPE). This annual groundwater report is prepared to complete the Groundwater and Surface water aspects for the Annual Review in accordance with Condition 5 of Schedule 5 of the Project Approval, and to present the annual monitoring and analytical data to show compliance with the approved Water management Plan (WMP).

E2W provided an updated WMP (8 January 2018, 23 November 2020, & 11 April 2022) which included a detailed assessment of the hydrogeology, site survey, pit depths and installation of additional wells and data loggers.

This annual groundwater report by E2W includes the monitoring data collected from 1996 to August 2023 for the Hitchcock Road and Portion 198 sites. Additional monitoring data was obtained from the 2018 to 2023 period which included water testing, and data logger information from new deep onsite wells (PF167MW-3D, PF167MW-4D). Due to the high rainfall and dam level, the data logger at Por 167 Dam was unable to be retrieved (i.e. logger download planned for 2024).

The monthly water monitoring by Meliss Mass (SEE) continued from the adjacent new site (i.e. 4378 Old Northern Rd @ PF-1, PF-2, PF-3)³, and the new wells installed in 2020 at Pit-8 (PFPit8MW-6D) and Pit-13 (PFPit13MW-7D, refer to Figure 1B). The seven (7) monitoring wells including; PFPit8MW-8A, PFPit8MW-8B, PFPit8MW-8C, PFPit8MW-8D, PFPit8MW-8E, PFPit8MW-8F, and PFPit8MW-8G which were installed in the Pit-8 floor were decommissioned in late 2022 to early 2023 due to the completion of sand extraction and backfilling operations.

The monthly water levels⁴ continued to be undertaken at available monitoring wells at the Hitchcock Road site and pumping bore (PB-1, PB-3⁵) at Lot 198 (Figures 1 & 5, appendix D).

 $-e_2v$

² Sampling locations (16) include: PF214MW-1, PFL2HitchMW-1, PF167MW-1, PF166MW-1, Lot198PB-1 & PB-3, and new locations: PF166MW-2D, PF166MW-2s, PF167MW-3D, PF167MW-4D, PF167MW-4s, and PFPit8MW-6D, PFPit13MW-7D and PF-3. The two water storage dams include: CWD & Por167spring. The two creeks (Lot 198, Hitchcock Rd) were sampled by Melissa Mass on 29 September 2022, 19 December 2022, 14 March 2023 and 16 June 2023.

³ Water sampling was completed at PF-3 on 16 August 2023, as no access was possible to PF-2 and PF-3 due to earthworks and boggy ground.

⁴ Measurements conducted by Melissa Mass of South East Environmental Pty Ltd using an acoustic water level probe.

2 GROUNDWATER AND SURFACE WATER MONITORING NETWORK

During May 2017, six (6) additional monitoring wells were installed to improve the site characterisation of the Hawkesbury Sandstone (i.e. PF166MW-2D, PF167MW-3D, PF167MW-4D, PF167MW-5D) and Maroota Sand aquifers (PF166MW-2s, PF167MW-4s). Refer to Figure 1B. The 6 monitoring wells were drilled by TerraTest Pty Ltd under E2W (Dino Parisotto) supervision to further assess groundwater levels and to guide the pit extraction depths (Tables 3A & 3B).

The existing wells (PF214MW-1, PFL2HitchMW-1, PF167MW-1, PF166MW-1) and new wells (PF166MW-2D/2s, PF167MW-3D, PF167MW-4D/4s, PF167MW-5D) were subsequently surveyed to enable reduction of groundwater levels to the Australian Height Datum (mAHD). The aerial survey provided an updated aerial photographic plan showing pit excavation works and site topographic contours in 2017 (Figure 2). The monitoring wells were surveyed by a registered surveyor (Mathew Freeburn Pty Ltd, May 2017). Refer to Table 2A.

During 2018, PFF acquired a new site (4378 Old Northern Rd, Maroota) which is adjacent to the Hitchcock Road sand extraction area (Figure 1B). Three existing monitoring wells identified as PF-1, PF-2, & PF-3 are situated on the new site. Melissa Mass from SEE has monitored the water levels on monthly basis since December 2018 (Graph HG-11).

During August/September 2020, an additional 8 monitoring wells (PFPit8MW-8A, PFPit8MW-8B, PFPit8MW-8C, PFPit8MW-8D, PFPit8MW-8E, PFPit8MW-6s, PFPit8MW-6D, & PFPit13MW-7D) were installed by Ultradrilling Pty Ltd and E2W at Pits 8 & 13 to assess groundwater levels and the flow regime (appendix D, Figure 1B, Graph HG-11B). The groundwater levels are monitored monthly by SEE to further assess the pit extraction depths.

At the Hitchcock Road site, groundwater was monitored at existing and new locations on 15 & 16 August 2023 by E2W (download of loggers, annual groundwater sampling, water level gauging and measuring field chemistry). Monthly gauging of groundwater levels and quarterly creek sampling was undertaken by Melissa Mass (SEE) during 2022-2023. The details of monitoring at the existing and new wells are presented in Tables; 2B, 3A, 3B, 3C, appendix D.

Groundwater Sampling of Existing Wells (August 2023)

- 1. Monitoring bore PF167MW-1 is located at Portion 167 and sampled on 16 August 2023 by E2W (note: data logger was removed in 2018).
- 2. Monitoring bore PF166MW-1 is located at Portion 166 and sampled on 16 August 2023 by E2W.
- 3. Monitoring bore PFL2HitchMW-1 is located at Lot 2 and has data logger results available from September 2021 to August 2023. The well was sampled on 15 August 2023 by E2W.
- 4. Monitoring bore PFP214MW-1 is located at Portion 214 and has data logger results available for the past year. Sampled on 15 August 2023 by E2W. A new logger was reinstated in well (PFP214MW-1) during July 2021 to enable the ongoing monitoring of water levels after construction of the nearby bund walls and tailings (note: logger was shifted from CWD).

Page 5 of 33

⁵ The pumping bores (PB-2 & PB-3) are no longer in use due to high iron. PB-1 & PB-3 were sampled in 2023.

5. Production Bores PF198PB-1/PF198PB-2⁶ and PF198PB-3 are located at Portion 198. Two production bores (PB-1, PB-3) were sampled on 17 August 2023 by PFF under E2W guidance (Figure 5).

The pumping records for 2022 to 2023 are available from the two water supply dams (clean water dams) located at Portion 167-CWD and Lot 198-CWD. No pumping occurred during 2022-2023 for the Lot 198 By-wash dam or the Portion167 dam⁷ due to the high rainfall.

Significant changes to the landform occurred during 2018 to 2019 in the vicinity of PF167MW-5D and PFP214MW-1 which is now covered by a bund wall, raised ground and tailings ponds. A large clay bund wall and holding/tailing pond are located on the southern boundary and alongside the boundary monitoring well (PFP214MW-1).

The altered landforms (bund walls, dams) on the southern boundary are used for water storages and stormwater control. Water circulating in the new tailing dam are interpreted to artificially raise the local groundwater levels at PFP214MW-1. Seepages were not observed in the downslope area of well (PFP214MW-1) during E2W site inspection with PFF (Josh Graham) on 24 July 2021, 15 September 2022 or 15 August 2023.

Groundwater Sampling of New Wells (August 2023)

- 6. Monitoring bore PF166MW-2D is located at Portion 166 and sampled on 15 August 2023 by E2W.
- 7. Monitoring bore PF166MW-2s is the nested shallow well adjacent to the deep well (PF166MW-2D) in Portion 166. The well was sampled on 15 August 2023 by E2W.
- 8. Monitoring bore PF167MW-3D is located at Portion 167 and has data logger results available. Sampled on 16 August 2023 by E2W.
- 9. Monitoring bore PF167MW-4D is located at Portion 167 and has data logger results available. Sampled on 16 August 2023 by E2W.
- 10. Monitoring bore PF167MW-4s is the nested shallow well adjacent to the deep well (PF167MW-4D⁸) and at Portion 167. Sampled on 16 August 2023 by E2W.
- 11. Monitoring bore PF167MW-5D was formerly located in Portion 167 and subsequently decommissioned in 2017 due to the construction of bund walls.
- 12. One of three wells (PF-3, not PF-1 or PF-2 as not accessible) located at the new site were sampled by E2W on 16 August 2023. Well construction logs are not available for the 3 wells.
- The two (2) new monitoring bores installed at Pits 8 & 13 were sampled on 15 & 16 August 2023 by E2W (i.e. PFPit13MW-7D, PFPit8MW-6D⁹). The shallow well outside of Pit-8 was dry and not sampled (PFPit8MW-6s). The Pit-8 floor area was flooded in 2021 and 2022 and subsequently backfilled due to completion of sand extraction works in late 2022 to early 2023. The wells (PFPit8MW-8A to -8G) have been

P211

⁶ PF198PB-2 was not operational during 2019-2020 (clogging issues). A new bore (PB-3) was installed in October 2019 at Lot 198 wash plant to replace the blocked bore (PF198PB-2), however is currently capped off due to clogging issues (Note: no water samples from PB-2). The pump from PB-3 has been removed in early 2023 due to clogging and high iron in the water.

⁷ The Por167dam is also refered to as the Por167Spring

⁸ The data logger had fallen to bottom of well MW-4D as the holding cable snapped. The data logger measurements were corrected for the logger depth change.

 $^{^9}$ The two deep wells are elevated areas and located outside of the extraction area.

decommissioned in late 2022 to early 2023 due to the backfilling of the Pit-8 quarry floor.

Collection of water levels and samples during 2022 to 2023 monitoring period and in previous months has been difficult at the site due to the heavy rains and muddy site conditions. The high rainfall in March 2022 (581 mm) and subsequent rainfall in late 2022/2023 has caused high dam levels and inaccessible access roads. Some data gaps exist in the past year of monitoring due to flooding and difficult site access.

The additional new wells (14) installed in 2017 (6) and 2021 (8) aimed to better characterise the groundwater flow regime in the central and northern portion of the site (i.e. PF166MW-2D & PF167MW-3D). The new wells at Pits-8 & 13 and PF-1,2,3 improved mapping of the groundwater flow pattern east of the Hitchcock Rd site (Figure 2). The groundwater flow regime at Pit-8 area is complex due to frequent flooding and geological divides causing variable recharge patterns.

The groundwater data and site topography indicate the presence of a groundwater divide near the highest part of the site which separates the flows to the north and south (RL ~240 m AHD at trig station, Figures 2 & 4).

Groundwater pumping and chemical analyses were also collected from the water supply bores in Portion 198 (i.e. PF198PB-1 & PB-3). The bores PB-2/PB-3 are both clogged due to high iron levels and no longer used (pumps removed). The replacement bore (PB-3) was installed in October 2019. The chemical treatment ceased at PB-2 in December 2016, however the bore is constantly clogged due to high iron levels in the water. The same issues occurred with the new bore (PB-3) which is capped off in 2022.

Groundwater monitoring has been carried out at the sites since 1996. Initially, water levels in bores PF166MW-1 and PF167MW-1 were measured manually at weekly intervals together with chemical field parameters such as pH and Electrical Conductivity (EC). The manual measurements continued until December 1998. In January 1999, the two bores were equipped with Dataflow Systems automatic data loggers (i.e. PF166MW-1; data logger was removed in 2017).

Data loggers have been downloaded quarterly between January 1999 and June 2000. Since June 2000, the dataloggers have been downloaded biannually. In January 2006, the old-style Dataflow dataloggers were replaced with Solinst Levelogger 3001 units, capable of storing 40,000 readings in the memory, with a battery life span of around 10 years. The Solinst dataloggers allow the data for annual downloading, a monitoring interval (once daily) started on July 2006. E2W downloaded the aged data loggers on 17 July 2017, however the data was only recorded from one (PF167MW-1) out of the four loggers (*note*. No data was not able to be downloaded from loggers at PFL2HitchMW-1, PFP214MW-1, PF166MW-1 in the 2016 to 2017 period).

Data logger information was retrieved from PF167MW-1 for the 2017 to 2018 period, including the two loggers (PFL2HitchMW-1, PFP214MW-1). The loggers from the two wells (PF166MW-1 in 2018, and PF167MW-1 in 2019) were not able to be programmed and subsequently decommissioned. In August 2021, the loggers from the two wells (PF214MW-1 and PFL2HitchMW-1) were not able to be downloaded and subsequently decommissioned.

Solinst level data loggers were reinstated in the two wells (PF214MW-1 @ July 2021, and PFL2HitchMW-1 @ September 2021) to continue the daily monitoring data.

Groundwater level measurements at all available wells is undertaken using an acoustic water level probe on a monthly basis (August 2017 to 2023) by Melissa Mass of South East Environmental Pty Ltd (SEE). The monthly water level measurements (& creek sampling) are conducted at new and existing wells by SEE, whilst training, assessment and the annual gauging and download of data loggers is conducted by E2W (Dino Parisotto).

Solinst data loggers (4) were installed at four locations (Por 167 dam, clean water dam, PF167MW-3D, PF167MW-4D) on 9 August 2017 to assist with the groundwater management and guiding of pit extraction depths. Three loggers (PF167MW-3D, PF167MW-4D, CWD) were downloaded on 15 & 16 August 2023 as part of this annual groundwater report. The data logger in the Por167spring was not able to be collected due to high water levels. The logger data from Por167dam would be retrieved once dam levels are lower.

PFF installed a Solinst Barologger at the site in 2021 to assist with the barometric correction of the logger data. The Barologger records 4 barometric readings per day to link with loggers in the dams (recording 4 readings per day) and bore logger data (1 reading per day).

Field chemistry (EC, PH, T, DO, Redox) was measured using a calibrated field meter hired from AES Pty Ltd (Geologic YSI professional series) at the groundwater monitoring wells (PF167MW-1, PF166MW-1, PFPFL2HitchMW-1, PFP214MW-1, PF167MW-4D/4s, PF167MW-2D/2s), and well (PF-3) at 4378 Old Northern Rd, and at Pits-8& 13 (PFPit13MW-7D, PFPit8MW-6D) on 15 & 16 August 2023 by E2W. The field chemistry (PH,EC) of the Lot 198 pumping bores (Lot198PB-1 & PB-3) were measured by the laboratory (ALS) on 17 August 2023.

Surface water sampling¹⁰ was conducted at the 2 dams (CWD, Por167 Dam) on 16 August 2023 by E2W. All water samples were submitted for chemical analyses under Chain of Custody procedures to Australian Laboratory Services Pty Ltd (ALS, NATA accredited).

Samples were collected from a total of 14 bores and 2 dams;

- o Existing/original Wells: PFL2HitchMW-1, PFP214MW-1, PF167MW-1, PF166MW-1, Lot198PB-1 & PB-3.
- o New Wells (2017): PF167MW-3D, PF167MW-4D, PF167MW-4s, PF167MW-2D, PF167MW-2s.
- o 4378 Old Northern Rd existing well; PF-3 (no access to PF-1, PF-2).
- New Wells (2020). PFPit13MW-7D, and PFPit8MW-6D (dry well: PFPit8MW-6s). The former seven (7) wells on the floor of Pit-8 have been decommissioned in late 2022/early 2023 due to completion of sand extraction and backfilling of the quarry (i.e. decommissioned wells: PFPit8MW-8A, PFPit8MW-8B, PFPit8MW-8C, PFPit8MW-8D, PFPit8MW-8E, PFPit8MW-8F, PFPit8MW-8G).
- o Water storage dams (CWD & Por167 Spring).

¹⁰ Sampling of creeks at Hitchcock Road and Lot 198 is undertaken on quarterly basis by SEE (Sept 2022, December 2022, March 2023, and June 2023).

Water sample collected from the bore PF198PB-1 & PB-3 are from water supply bores (i.e. large diameter deep bores. PB-3 is longer used for water supply/pumping due to high iron levels/clogging).

The laboratory reports are presented in Appendix B-1. The analytical results have been plotted on individual graphs that are updated annually to assess trends over time (Graphs 1 to 6, and Appendix C).

The analytical list for all bores, which was discussed and agreed upon with the DLWC (now DPIE Water) has included:

- pH, Electrical Conductivity and Total Dissolved Solids;
- Calcium, Magnesium, Sodium and Potassium;
- Chloride, Sulphate, Bicarbonate; and
- Oil & Grease.

2.1 Surface Water Monitoring

The updated Water Management Plan for the site outlines the surface water monitoring requirements. The surface water monitoring program was undertaken in compliance with Condition 19 of Schedule 3 of the Project Approval. Surface water quality monitoring was monitored on a quarterly basis when the creek sample locations were flowing (& accessible).

Surface water samples were taken from a creek below the Hitchcock Rd site (Figure 1) and from a creek below Lot 198 DP752025 (Figure 5). Refer to Appendix B-2 (field/laboratory reports), and Table 3-13 (tabulated laboratory results).

Condition 19.

The Surface Water Monitoring Program shall include:

- (a) detailed baseline data on surface water flows and quality in downstream water courses that could be affected by the project;
- (b) surface water quality and stream health assessment criteria, including trigger levels for investigating any potentially adverse surface water impacts; and
- (c) a program to monitor:
- surface water flows, quality, and impacts on water users;
- stream health; and
- channel stability.

Monitoring of channel stability will be based on visual inspections undertaken at the same time. The assessment will include analysis applying to the following trigger levels:

•	pH;	+/-1 unit from background
•	Electrical conductivity (EC);	<1,500 uS/cm
•	Total suspended solids (TSS);	<50 mg/L
•	Oil and grease.	<10 mg/L

Note: Exceedance of trigger levels would trigger an investigation into the cause will be undertaken immediately so action can be taken to return levels to within average range. No additional investigations or follow up on storm and/or erosion issues were conducted after the monitoring undertaken on 4 dates (September 2022, December

2022, March 2023, June 2023) due to the satisfactory water testing results and site observations. Refer to Tables 3-9A, 3-9B, and Appendix B-2.

Samples were taken and analysed following heavy rain events and any incidents on Lot 198 DP752025 which could have an impact on water quality. Sample location is presented in Figure 5, with the field and laboratory reports presented in Appendix B-2.

Surface water monitoring was undertaken by Melissa Mass (SEE) at two locations on the Hitchcock Road site (i.e. Lot 198 creek, and Little Catai Creek on Hitchcock Rd site). Creek water samples were obtained and analysed on a quarterly basis; 29 September 2022, 19 December 2022, 14 March 2023 and 16 June 2023 (Appendix B-2).

2.2 Monitoring Bore PF167MW1

Groundwater monitoring at bore PF167MW-1 commenced in March 1996. The data between March 1996 and December 1998 (manual collection) have been plotted in the graph of Figure 2, together with EC and rainfall records collected by PFF (Appendix C). An automated weather station has been installed by PFF in 2010 and in early 2017 (including barometric pressure).

The Figure HG-2 (2013-2018, and after 2019 is not available due to a faulty-aged logger) presents the combined Solinst datalogger records for bore PF167MW-1 (previous records are in Appendix C). The recent and monthly water level gauging data and graphs is presented in Table 2A, Figure HG-8, and Appendix D.

Previous minor data gaps exist and a slight difference between the manual data and the start of the automatic recording is evident in the previous data, which are due to the time intervening between the end of the manual and start of the automatic recording methods (Appendix C, URS, 2013).

2.3 Monitoring Bore PF166MW1

Groundwater monitoring at bore PF166MW-1 (Figure HG-3 shows 2013 to 2016 monitoring data) commenced in March 1998 in the same manner as for bore PF167MW-1. The data between March 1998 and December 1998 (manual collection) have been plotted in the graph of Figure 4 in Appendix C, together with EC and rainfall records collected by PFF.

Refer to Table 2A for water level gauging results. Logger data is not available for 2016-2017 (logger now decommissioned due to age >10 yrs). The monthly water level gauging graph is presented in Figure HG-8A/8B (2017 to 2021), and Appendix D (Table F-1). The well was previously dry (2019) due to drought but sampled during high rainfall years (2020 to 2023).

2.4 Monitoring Bore PFP214MW1

Bore PFP214MW-1 was installed in March 2009 as part of an extended groundwater monitoring network following the Development Approval for Portion 214, located at the southern boundary of the Hitchcock Road site.

A datalogger was installed in the bore in early April 2009 (Solinst Levelogger Gold 3001, serial no. 51040540). Refer to Table 2A for the recent water level gauging results.

Bore PFP214MW-1 hydrograph is presented in Figure HG-4 (showing data collection from 2013 to 2020, and 2021 to 2023). Logger data is not available for 2016-2017, and for 2020-2021 due to technical issues with the aged logger. The replacement Solinst Level logger (SN. 2071864) was installed in the bore during July 2021. The monthly water level gauging graph is presented in Figure HG-4 and Appendix D (Table F-1).

The monthly water level gauging graph is presented in Figure HG-8A & HG-8B (2017 to 2023) and in Appendix D.

2.5 Monitoring Bore PFL2HitchMW1

Bore PFL2HitchMW-1 was also installed in March 2009. This bore is located midway along the eastern boundary of the Hitchcock Site and monitors the full sequence of the Maroota Sand. A datalogger was installed in the bore in early April 2009 (Solinst Levelogger Gold 3001, SN. 510405840). Refer to Table 2A for water level gauging results. A new level logger (Solinst serial no. 2139431) was installed in the well on 23 September 2021 and downloaded in September 2022.

The bore PFL2HitchMW-1 hydrograph is presented in Figures HG-5, HG-8A/8B (2017 to 2021, and 2021 to 2023) and in Appendix D (Table F-1).

2.6 New Monitoring Bores (2017-2021)

A summary of the existing and new bores is presented in Tables 3A, 3B and 3C.

Seven new monitoring wells (PF167MW-3D, PF167MW-4D, PF167MW-4s, PF167MW-2D, PF167MW-2s, PF167MW-5D¹¹) were installed at the site in 2017 to assist with the hydrogeological assessment of the Hawkesbury Sandstone and Maroota Sands aquifers.

Data loggers were installed in August 2017 at two deep wells (PF167MW-4D, PF167MW-3D, refer to Figures HG-6 and HG-7) to assist with the pit extraction depths. Results for the new wells are in presented in Table 3-9A, Figure HG-8A/8B, and Appendix D (Table F-1).

The four existing wells (PFL2HitchMW-1, PFP214MW-1, PF167MW-1, PF166MW-1) were sampled on 16 August 2023 to assist with the groundwater study at the site. The new wells (2 out 5) at Pits-8 & 13 (PFPit13MW-7D, PFPit8MW-6D), and one bore (PF-3) on the adjacent property were included with the monitoring program (i.e. monthly monitoring and annual sampling in August 2023).

Access was not possible to PF-2 and PF-1 on the neighbouring property in August 2023, and all monitoring wells at Pit-8 (quarry floor) were flooded during mid to late 2022 due to heavy rain (wells are underwater; PFPit8MW-8A to 8G) and subsequently decommissioned in late 2022 and early 2023 due to backfilling operations.

2.7 Portion 167 Spring

At the early stages of the site development, an excavation (PF167 Spring¹²) was carried out to the top of the Hawkesbury Sandstone to an approximate level of 178m AHD. The excavation

e2W

¹¹ PF167MW-5D was decommissioned in early 2018 during the construction of the tailings dam.

¹² The Portion 167 Spring is also referred to as the Portion 167 Dam.

collects groundwater and surface water run-off and was eventually licensed by the DLWC (No.10BL157308) as part of the water supply of the operation. Water levels measured against surveyed pegs have been collected at the dam since September 1996 and pumpage records kept since January 1997.

Water quality in the dam is generally not monitored because the dam collects incident rainfall, run-off and groundwater and, as a result, water quality would vary according to the proportion of each component at the time of measurement.

Due to high rainfall in 2014-2015 (1321.5 mm) no monitoring or pumping was required from the Portion 167 Dam. Pumping was undertaken by PFF from Portion 167 Spring during the 2019 to 2020 monitoring period (Total of 28.448 ML) due to the prevailing drought.

Pumping was undertaken by PFF from Portion 167 Spring during 2020 to 2021 (42.865 ML) and for the 2021 to 2022 (2.256 ML) monitoring period and summarised in Table 3-7 (2021-2022). Pumpage occurred during the rainfall periods (1633.5 mm during 2021-2022, and 1264.4 mm for 2020-2021) but also to meet the requirements for sand extraction and processing.

No pumping was undertaken by PFF from Portion 167 Spring during 2022 to 2023. The water level of Por167Spring on 10 August 2023 was approximately 186 mAHD.

Water level monitoring is not required in the license conditions, however a data logger was installed in August 2017 to assist with the site water balance and assessment. (*Note: the logger could not be downloaded due to high dam levels in July-September 2021, July-September 2022, and August 2023. The two dams CWD and P167 spring had merged during the heavy rainfall in 2022*). The approximate level of the Por167Spring on 10 August 2023 was 186 mAHD (i.e. based on comparison to a nearby survey marker).

The previous data logger readings are provided as raw data in Figure HG-10 (note: logger data requires adjustment with barometric pressure, evaporation and pumping influences. To be provided in separate documentation).

Water samples and field chemistry were collected on 16 August 2023 for the annual water sampling and assessment (Figure HG-10, Table 3-9B).

2.8 Clean Water Dam (Portion 167)

Water quality in the dam is not previously monitored because the dam collects incident rainfall, run-off and recycled water from the wash plant and tailings.

Water level monitoring is not required in the license condition, however a data logger was installed in August 2017 to assist with the site water balance. Water samples and field chemistry were collected on 16 August 2023 as part of the annual water sampling by E2W (Figure HG-9 and Table 3-9B). The data logger was downloaded on 16 August 2023 (note: logger was not downloaded in 2022 due to high rainfall and dam levels). The logger data is presented in Figure HG-9 (note: the raw logger data at CWD requires adjustment with barometric pressure- provided in separate documentation).

2.9 Portion 198 Water Supply Bores

The two water supply bores in Portion 198 (PF198PB-1 and PF198PB-2) have been monitored manually since their installation in March 1998. Groundwater samples have been collected quarterly for the last four quarters to March 2000, biannually up to July 2006 and annually since then. Pumpage records are collected and totalised weekly.

The pump in bore PF198PB1 was out of service for most of 2012-2013, and PF198PB-2 was replaced in 2019 by PF198PB-3.

Water quality data have been plotted for selected parameters and the graphs (5 & 6) and the laboratory reports in Appendix B-1. Monthly water levels were measured during the 2017 to 2023 period by South East Environmental (Melissa Mass, Figure HG-1).

The water supply bore (PF198PB-1) was operational during 2022 to 2023 (Table 3-8¹³). Groundwater sampling was conducted in August 2023 from the PF198PB-1 discharge outlet, together with manual (bailer) sampling at PF198PB-3 (note: pumps are removed from PF198PB-2/PB-3 due to clogging issues). A water sample was collected from PF198PB-1 and PF198PB-3 for the chemical assessment by ALS (Tables 3-5 & 3-6).

Note: Chemical treatment for clogging (Fe-floc) at PF198PB-2 ceased in December 2016, however the bore has been clogged/not sampled for the past few years and replaced by PB-3 in 2019. The clogging issues has occurred at new bore (PB-3), and therefore decommissioned.

3 GROUNDWATER DATA ASSESSMENT

The groundwater assessment for the site has been conducted by E2W in collaboration with PFF (Josh Graham) and Melissa Mass (South East Environmental Pty Ltd, SEE). The analytical reports by ALS Environmental Pty Ltd (NATA laboratory) are presented in Appendix B-1, whilst the monthly water level measurements by SEE are included in Appendix D.

Additional monitoring locations are included in the 2020 to 2023 (where access was possible) operating period due to the installation of eight new wells (Pits 8 & 13 in Aug/Sept 2020), six new wells (May 2017), inclusion of 3 wells (PF-1,2,3) on the adjacent property (Figure HG-11), assessment of the clean water dam (CWD) and Por 167 dam (Figures; 1, 1A, 1B). The additional testing locations relate to the revised water management plans (January 2018, November 2020, April 2022).

The quarterly surface water testing (September 2022, December 2022, March 2023, June 2023) has been included at two locations (Lot 198, and Little Catai Creek) in the annual water monitoring program (Figures 1 & 5, Table 3-13, and Appendix B-2). No exceedances of the guidelines are reported for the 2022 to 2023 monitoring period.

This annual groundwater report contains the available monitoring data and updates the analytical data from water monitoring (incl field chemistry) collected annually. The Water Management Plan (WMP) for the site outlines the sample locations, parameters and guidelines in which test results are assessed, together with the associated trigger limits.

-

¹³ PFL198PB-1 pumpage for 1 July 2022 to 30 June 2023= 17.688 ML/yr, whilst a total of 26.684 ML for the 2022 calendar year (January to December).

3.1 New Monitoring Wells

During May 2017, six additional monitoring wells were installed to improve site coverage and better assess water levels in the Hawkesbury Sandstone (PF166MW-2D, PF167MW-3D, PF167MW-4D, PF167MW-5D) and Maroota Sand Aquifers (PF166MW-2s, PF167MW-4s Figures 1 & 2, Tables; 2, 3A & 3B). The 6 monitoring wells were drilled by TerraTest Pty Ltd under E2W (Dino Parisotto) supervision and testing (Table 3B).

The eight (7) additional wells (PFPit8MW-8A to 8G) installed in the floor of Pit 8 in 2020/2021 to guide the pit extraction depths were decommissioned in late 2022 to early 2023 due to the quarry backfill operations. The inferred hydrogeological cross sections for the site are presented in Figures 3 & 4. The new monitoring wells and recent survey (aerial and well RL details) were used to better assess the pit extraction depths and the 2 m buffer zone.

E2W note that the previous URS water contour maps (2013) were based on a limited well network comprising three monitoring wells over the 100 ha site. The additional new wells (14) installed at the site in 2017 and 2020 provide a better depiction of the groundwater flow regime, particularly in the north (e.g. PF166MW-2D). The additional three wells (PF-1,2,3) available on the adjacent new property (4378 Old Northern Rd) also improve the characterisation of the flow regime on the eastern site boundary (Appendix D & Table F-3, Figure 1B).

The groundwater data and site topography indicate the presence of a groundwater divide at the highest point of the site (RL ~240 mAHD at former trig station located near PF166MW-3D and PFL2HitchMW-1). Refer to Figures 1 to 4.

A decline in groundwater levels was evident across the site in 2019-2020 due to the drought (i.e. rainfall =559 mm during 2019-2020), however water levels did rise during 2021/2022 due to the above average annual rainfall (2021-2022= 1,633.5 mm, 2020-2021= 1,264.4 mm). Water levels have declined slightly since late 2022 to 2023 due to less rainfall (2022-2023= 1246.2 mm). Refer to graphs HG-8A & 8B.

3.2 Groundwater Levels

Groundwater levels in the Hawkesbury Sandstone and Maroota Sand aquifers indicate the presence of perched and regional water tables (Tables; 2A, 3A & 3B).

The plots of bore PF167MW-1, which taps the full saturated thickness of the Maroota Sand, and bore PF166MW-1, which taps an unconfined aquifer (Maroota Sand) perched at a higher elevation, indicate a general rapid response to periods of sustained rainfall (Appendix C). Records for the two monitoring bores (PF214MW-1 and PFL2HitchMW-1) indicate a subdued and moderate response to rainfall. The water levels at bore (PF214MW-1) are influenced and mounded by the artificial recharge linked to recent dam and tailings constructions (2019).

The yearly rainfall for the year 2010 (1015.1mm), for the year 2011 (1115.4 mm) and for the year 2012 (984 mm) are above the long term average of 910.3 mm (to June 2013). Rainfall for the year July 2013-June 2014 has been just 595.5 mm, indicating that the rainfall for year is below the yearly long term average (*Note: These rainfall data are reported from the BOM weather station No. 67014 located on Old Telegraph Road*).

Rainfall for July 2014 to June 2015 was 1321.5 mm and above the annual average. The above average rainfall for 2014-2015 and high monthly rainfall during April 2015 (422 mm) has stabilised water levels associated with the previous year of low rainfall and subsequently caused a rising of the water table in all bores. Rainfall for July 2015 to June 2016 was 1176 mm and above the annual average.

The average rainfall for July 2016 to June 2017 was 957.4 mm, with a substantial 276.8 mm occurring in the month of March 2017. The groundwater table rose approximately 1m in the sandstone aquifer (PF167MW-1) following March 2017.

The rainfall for July 2017 to June 2018 was 473 mm, July 2018 to June 2019 was 557.4 mm, and 559 mm for the July 2019 to June 2020 reporting period. The rainfall in 2018/2019 were below the annual average and indicate drought conditions. All deep wells and shallow wells show a general decline and/or stabilisation of groundwater levels reflecting the prevailing low rainfall.

The rainfall for July 2020 to June 2021 was 1264.4 mm, and 1633.5 mm from July 2021 to June 2022. The rainfall during 2020 to 2022 indicate a return to above average rainfall conditions (& site flooding) after several years of drought. Groundwater levels in shallow wells responded well to heavy rainfall during February 2020 (243 mm) and March 2021 (229.8mm), whilst only subtle changes in the deep wells. Intense rainfall occurred during February 2022 (250.6 mm) and March 2022 (581.2mm) causing obvious water level rises in both shallow and deep aquifers at the site.

The rainfall during 2022 to 2023 of 1246.2 mm, although was lower than the previous year is still substantially above the annual average. Groundwater levels have declined with the lower rainfall during 2023, especially from March to August 2023.

3.3 Bore PF167MW1

After a significant rain event in June 2007, the water level rose by 4.5 m and similar to highest recorded value in mid-2000 (Figure HG-2, Appendix C).

Since June 2011 to 2014, after a period of variable and a slow decline, the water level in this bore has been rising steadily following the above average rainfall up to 2013 (2014 is below annual average). The level from rainfall in 2014 to 2015 is similar in the year 2000. Water levels were stable in 2014 and then rose sharply (approximately 1.5 m, 183.8 m AHD) after the high recharge event of April 2015 (rainfall 422 mm, Figure HG-2).

Following the April 2015 rainfall event other recharges occurred in early and middle of 2016 causing groundwater levels to rise between 183 and 184 m AHD (June $2016 \sim 183.4$ m AHD).

Water levels were approximately 183.5 AHD during July 2017 and ranged from ~182.5 to 184 m AHD during 2016 to 2017. Spikes in water levels relate to storm events, such as the high rainfall in March 2017 (Figure HG-2). The groundwater table rose approximately 1 m in the sandstone aquifer (PF167MW-1) following the March 2017 rainfall.

The water levels manually measured from August 2016 to August 2018 ranged from 183.12 m AHD to 181.1 m AHD (August 2018), and with a gradual lowering (approximately 1m) to August 2019 (180.24 m AHD). The water levels during 2020 to 2021 rose due to the higher

rainfall and ranged from 181.95 mAHD (August 2020) to approximately 183.96 m AHD (May 2021).

Water levels responded substantially to the high rainfall in February and March 2022 (250.6 mm, 581.2 mm) causing levels to rise substantially (~2.3m) to July 2022 (185.85 mAHD). The October 2022 groundwater levels of 185.55 mAHD are the highest since 2013. The groundwater levels decline by 1.7m from late 2022 to August 2023 (183.85 mAHD) due to the decreased rainfall recharge.

Refer to Table 2A, Appendix D (Table F-1) and Figures HG-8A/8B and Figure HG-2.

3.4 Bore PF166MW1

Since March 2011, the water level in this bore has been rising steadily, although it shows a slight fall during a low rainfall period in the second half of 2012, followed by a rise due to the high rainfall at the beginning of 2013. Bore PF166MW-1 taps a perched aquifer with variable responses to major and sustained rainfall events and periods (Figure 3 in Appendix C).

The water level declines during 2014 and then rises steadily in 2015 due to the above average rainfall and high April 2015 rainfall (422 mm, Figure 3). Following the April 2015 rainfall event other recharge events occurred in early 2016 causing groundwater levels to rise and peak at approximately 200.8 m AHD in April 2016 (Figure HG-3).

The water levels manually measured from August 2016 to August 2018 ranged from 199.55 m AHD to below 199 m AHD in May 2018 (Figure HG-8A/8B). The well has been dry from 2018 to August 2020 (BOH=11.8 m bgl). The groundwater rose quickly (1m) following heavy rains in May 2020 and was measured at 199.20 mAHD on 24 July 2020 (Figure HG-8A).

During 2020 to 2021, water levels rose gradually due to the higher rainfall, and ranged from 199.33 mAHD (August 2020) to approximately 199.85 m AHD (August 2021). The water levels continued to rise (1.69 m) during late 2021 through to September 2022 (201.54 mAHD). Water levels decrease by approximately 1.15m from late 2022 through to August 2023 (200.41 mAHD) due to less rainfall, especially from March to August.

The water levels in the Maroota Sand are generally perched above the sandstone aquifer and have recently risen due to the high annual rainfall in 2020-2021 (1264.4 mm) and particularly from 2021 to 2022 (1,633.5 mm).

3.5 Bore PFP214MW1

Bore PFP214MW-1 taps the full thickness of the Maroota Sand at the southern edge of the quarry area. Since its installation in March 2009, the water level has shown a slow declining trend up to end of February 2011. Since that time, the water level has risen in response to the above average rainfall (Figure 4 in Appendix C).

Water levels fluctuated slightly (<1m) during 2014 (181.6 m to 180.3 AHD) and then rises slightly and stabilises (180.3 to 181.2 m AHD) with minor fluctuations during 2015 and 2016. Water levels also showed minor fluctuation during 2017 to 2018 with an overall decline. Water levels ranged from approximately 180.2 to 179.5 m AHD (August 2018, Figure HG-4).

The water levels manually measured from August 2016 to August 2018, ranged from 179.41 m AHD to 179.54 mA HD (August 2018). The water levels continued to fluctuate during 2018 to 2019 (178.06 to 179.69 m AHD), reflecting nearby water storages, and bund wall constructions. The groundwater has risen by almost 2 m since early 2019 to July 2020 due to the nearby new water storages/tailing dam (Figure HG-8A/8B). The groundwater level was manually measured at 180.41m AHD on 24 July 2020 which corresponds to the logger levels (Figure HG-4).

During 2020 to 2021, water levels continued to rise gradually to approximately April 2021 and then stabilised with slight decline. The groundwater levels ranged from 179.72 mAHD (August 2020) to approximately 181.19 m AHD (May 2021).

The groundwater levels have remained relatedly stable during late 2021 to middle of 2022 (22-3-2022 @ 181.26 mAHD, and 181.25 @ 15-9-22). The groundwater levels decline by approximately 0.7 m from late 2022 to August 2023 (180.53 mAHD) due to the lower rainfall. Access to the well (PFP214MW-1) was not possible from April 2022 to November 2022 due to muddy conditions.

Refer to Table 2A and Figure HG-8A/8B which presents the water levels trends over time (2013 to 2023).

Note: PFF conducted a survey of new and existing wells (Freeburn Surveying Pty Ltd) in May 2017 as part of updating the well network. An adjustment (1.16m elevation) of the well casing RL at PF214MW-1.

3.6 Bore PFL2HitchMW1

Bore PFL2HitchMW-1 is the deepest bore in the Hitchcock Road site, as it in the vicinity of the former trigonometric station, which is the highest elevation on the site and taps the full thickness of the Maroota Sand aquifer.

The hydrograph shows that after an initial settlement period after drilling, the water level stabilised at an RL level of 189.6 m AHD without any significant response to the rainfall events until September 2012, after which time it shows a steady rise in response to the above average rainfall (Figure HG-5, Appendix C).

Since 2013, the water level shows a slight consistent decline to approximately December 2014, followed by a stable to gently rising water table after April 2015 to middle of 2016 where it stabilises at approximately 189.95 m AHD (Figure HG-5). The water levels decline gently from August 2017 to August 2018, ranging from approximately 189.7 to 189.4 m AHD, respectively. The water levels from August 2018 to July 2019 show a relatively stable and decreasing water level (189.85 to 189.5 m AHD) reflecting the below average rainfall.

The water levels manually measured from August 2016 to August 2018 ranged from 189.6 m AHD to 189.85 m AHD (Figure HG-8A/8B). The water levels from September 2018 to July 2020 show a relatively stable depth between 189 to 190 m AHD¹⁴.

R001v1 Hitchcock Annual GME DP 11-9-23f

¹⁴ The steel monument and PVC pipe at well (PFL2HitchMW-1) was damaged during September 2018. The water levels and reference point were subsequently adjusted for the gatic cover (ground level).

The groundwater level was manually measured on 24 July 2020 (189.28 m AHD) and 22 July 2021 (189.63 mAHD) showing a stable and gentle rise from the higher rainfall of 2020-2021. The groundwater level continues to rise from late 2021 to July 2022 and September 2022 (192.05 mAHD) due to high rainfall. The groundwater level after September 2022 declines steadily through to August 2023 (190.79m AHD). The heavy rainfall events during 2022 (July 407.8mm) followed by dry weather in middle of 2023 caused the rapid recharge and the rise of water levels and subsequent decline. Refer to Figures HG-5, and HG-8B.

3.7 Portion 167 Spring

Records of pump operation have been kept from Portion 167 Spring since January 1997. The Figure 7 (in Appendix C) shows the monthly summary of the pumpage from the dam. Due to the above average rainfall over previous years (2011-2013 and 2014-2015) no pumping has been necessary from this source, however below average rainfall has occurred in early 2014, and 2017-2018, with some pumping necessary. No pumping occurred from July 2014 to June 2015.

Pumpage occurred (46.829 ML) from Portion 167 Spring during 2015 to 2016. Pumpage occurred (38.407 ML) from Portion 167 Spring during 2016 to 2017, and 48.953 ML for 2017 to 2018. Pumpage (26.009 ML) occurred from Portion 167 Spring during 2018 to 2019, and from 2019 to 2020 (28.448 ML).

The new licensed limit for the Portion 167 spring is 44 ML/year which was not exceeded for any year. The annual pumpages are as follows; 2019 to 2020 period (28.448 ML), 2020 to 2021 (42.865 ML) and the current year 2021-2022 (2.256 ML).

The pumping records from 1997 to 2022 are provided in Table 3-7. No pumping occurred for the Por167 Spring from July 2022 to June 2022, and from July 2022 to June 2023. Pumping has not occurred at Por167 Spring since November 2021 due to the high rainfall.

The rainfall recorded at the BOM station since 2010 has been above the long-term annual average of 910.3 mm. No water levels have been recorded at this site during the 2011 - 2013, 2014 - 2015 years, as the dam and the pump have been under water for most of the recording period due to the above average rainfall and resulting run-off experienced in the Maroota area during the 2011-2013 and, in particular, during the period May-June 2013 when the water level peaked briefly at 189 m AHD, returning to 180 m AHD at the end of June 2013.

The water level in the dam reduced by approximately 2 m (184.5 m to 182.5 mAHD) during the years (2017-2018) due to the low rainfall and high pumpage (48.953 ML/yr). During 2018 to 2019 levels were at low levels (30 July 2019 @ 183.63 mAHD) due to the drought conditions.

Dam water levels have been rising from 2020 to late 2022 due to the above average rainfall. The water level was measured at 184.54 mAHD on 22 July 2021. The water levels in the dam during 2021-2022 are potentially the highest and estimated between 186 and 187 mAHD (September 2022), which caused a merge with the CWD. Refer to Figure HG-10. PFF (Josh Graham) estimated the spring water level on 10 August 2023 at 186 mAHD.

The water levels in the dam are also affected by significant evaporation losses during summer and combined contributions from rainfall and groundwater recharge (Figure HG-10). The dam

is hydraulically connected to the Maroota Sands aquifer and aquifer recharge patterns being closely linked to climate.

The quarry area is internally draining and, therefore, the dam collects all incident rainfall on the site. Although the dam levels are variable and affected by pumpage (i.e. dust suppression and irrigation of rehabilitated areas and, more recently, for sand slurry), records show that water levels return rapidly to the average values, especially after rainfall and ceased pumping.

The data logger was installed in the dam during a period of high levels in August 2017 (Figure HG-10). Due to the low rainfall and declining water levels, the logger was shifted to a deeper part of the dam by 2.295m on 12 April 2018. The logger data indicates a lowered water table due to the drought conditions up to 2020. The higher rainfall period (2020-2022) and heavy rainfall in February 2021 (243 mm), March 2022 (581 mm) and July 2022 (407mm) caused dam levels to rise (> 2 m) and cover the data logger/peg (i.e. not downloaded as submerged). The water level in Por167 Spring was measured at 184. 42 mAHD on 22 July 2021 by PFF using nearby surveyed benchmarks. Accurate survey (2022 and 2023) of the water levels in Por167 spring has not been conducted due to heavy rains and muddy site conditions.

Previous records suggest that the Maroota Sand aquifer at the site can sustain the required pumpage even under the lower rainfall recharge conditions.

3.8 Clean Water Dam (CWD in Portion 167)

Water quality in the dam (1 Ha ~1.5m maximum depth) was not previously monitored because the dam collects incident rainfall, run-off and recycled water from the wash plant and tailings. The data logger was installed in the dam during a period of high levels in August 2017 (187.635 mAHD). The water levels have decreased by approximately 1m from 2017 to 2018 (186.5 mAHD) due to a lack of rainfall, summer evaporation losses and through operational activities. The water levels fluctuated by approximately 1 m from 2018 to 2019.

The water level on 22 July 2020 of 186.90 m AHD was slightly higher than the 30 July 2019 level (186.77 m AHD). Pumping records are provided in Table 3-12 whilst the logger results are presented in Figure HG-9. The water level was 0.315 m higher on 14 July 2021 (187.215 mAHD) relative to CWD level on 22 July 2020.

The collection of the data logger and survey was not possible from the CWD in September 2022 due to high dam levels and flooding at the site. The logger at CWD was downloaded on 16 August 2023 and presented in Figure HG-9 (raw logger data). The CWD has fluctuating water levels due to the frequent inputs (tailings, return water) and outputs (pumping for processing plant) from the dam.

Water level monitoring is not required in the new licence conditions, however a data logger was installed in August 2017 to assist with the site water balance. Water samples and field chemistry were collected on 16 August 2023 by E2W to assist with assessing and managing the surface water quality (Table 3-9B).

3.9 Water Supply Bores (PB1, PB2/PB3 at Lot 198)

Pumping records for the water supply bores (PB-1/PB-2 and PB-3¹⁵) in Lot 198 for the year July 2021 to June 2022 had combined usage of 20.201 ML. The Pumping records for the water supply bore (PB-1) is tabulated in Table 3-8 (i.e. usage of 17.688 ML from July 2022 to June 2023, or 26.684 ML for calendar year; January to December 2022). Groundwater usage is still significantly below the combined new annual allocation of 56 ML.

In previous years, during 2014-2015 pumpage was 21.8 ML, whilst during 2013-2014 the total pumpage was 33.6 ML. During 2015 to 2016 and given the above average rainfall the available pumping records (PB-1 & PB-2) indicate a usage of 16.841 ML. Pumpage from 2016 to 2017 from PB-1/PB-2 indicate a combined usage of 16.507 ML. The pumpage during 2017 to 2018 (13.622 ML), and from 2018 to 2019 at PB-1 (9.947 ML) are well below the 60 ML allocation.

The replacement bore (PB-3) was installed and commissioned in October 2019 due to the ongoing clogging/high iron levels of PB-2 (i.e. PB-2 is no longer used and replaced by PB-3, which was also decommissioned in 2022 due to clogging). Refer to Table 3-8 & Figure HG-1.

3.10 Water Quality

The water quality obtained from all available monitoring wells and dams are presented in the hydrochemical diagrams (i.e. Piper trilinear & expanded Durov in Appendix E) and time series graphs (Graphs 1 to 6).

Water quality in bores PF167MW-1 and PF166MW-1 has been monitored for pH and EC since monitoring started. Since June 1999, groundwater quality has been analysed for a range of analytical parameters and for Oil & Grease to obtain background data.

Since July 2009, groundwater quality data have also become available from the newly installed monitoring bores, PFP214MW-1 and PFL2HitchMW-1. Historical and recent analytical results for the other samples from the monitoring sites are summarised in Tables 3-1 to 3-6 and have been plotted in the graphs (1 to 6). The laboratory reports are presented in Appendix B-1.

The graphs (1 & 2) show EC time series trends with water levels and rainfall for the initial monitoring period (March 1996 to January 1999 for bore PF167MW-1 and March 1998 to January 1999 for bore PF166MW-1), before the installation of the dataloggers. Refer to Appendix C for previous graphs presented in URS 2013. The EC graphs show a sympathetic variation with rainfall, indicating the effects of dilution generated by recharge (decrease in EC) and by a lower water table. In the latter case, the improved EC is interpreted as the effect of aquifer recharge by fresher water.

The graphs (1 to 6) confirm the dependence of the aquifer upon rainfall to maintain storage and supply. Analysis was not previously carried out of the water from the Portion 167 Dam because of extraneous influences, such as direct rainfall and run-off, make the water in the dam not representative of the groundwater at that site.

Groundwater quality has also been monitored at bores PF198PB-1 (Graph-5) and PF198PB-2/PB-3 (Graph-6; previous data), the processing plant water supply bores 16. The water in these

C211

¹⁵ PB-2 and PB-3 have been decomissioned due to high iron in the groundwater

¹⁶ PB-2 was replaced by PB-3 (since October 2019, refer to Table 3A). The two bores (PB-2/PB-3) are no longer in use due to Fe/clogging issues.

bores is derived from the Hawkesbury Sandstone aquifer. Water quality records are summarised in Tables 3-5 and 3-6 and have been graphed (Refer to Graphs 1 to 6, and previously by URS (2013) in Appendix C). The groundwater levels in the production bores (PF198PB-1 & PB-2/PB-3) are presented in Table 3-8.

The waters in the Maroota Sand aquifer monitoring bores are similar and have a characteristic rain composition, with low pH (acidic), low TDS and a Sodium-Chloride water type. The samples were also analysed for Oil&Grease to monitor the possible effect of the sand extraction operations. Concentrations of Oil & Grease were not detected in all bores for the August 2023, 2022, 2021, 2019, 2018, and previous four monitoring events (2017, 2016, 2015, 2014). Some anomalous Oil&Grease results were reported from water samples from two locations (CWD and P166MW-1) on 5 August 2020, however were "not detected" with resampling on 19 August 2020 by E2W. The initial anomalous Oil & Grease results are interpreted to result from potential cross contamination, such as skin contact.

The deep Hawkesbury Sandstone pumping bores groundwater display a slightly different character from that in the shallow Maroota Sand aquifer in the Hitchcock Road area and from the shallow Hawkesbury Sandstone aquifer in other areas of Maroota. The deeper groundwater has a slightly higher TDS, pH and Bicarbonate content than the shallower Maroota Sand groundwater; however, its overall low salinity content and sodium-chloride rain composition indicate a dynamic groundwater regime with regular and rapid rainfall recharge.

An increasing EC/TDS trend was evident in two bores (PFL2HitchMW-1, PF214MW-1) from 2013 to 2017, and inferred to relate to variable aquifer characteristics and rainfall recharge patterns. The EC/TDS trends at the two bores (PFL2HitchMW-1, PF214MW-1) stabilised over several years (2017-2022), however show a slight increase in August 2023. The TDS/EC trend at both bores (PFL2HitchMW-1, PF214MW-1) is variable to increasing, and likely to relate to the seasonal variations ranging from drought to floods. Ongoing monitoring is required to further assess the EC/TDS (including Na-Cl) trends at the two bore locations.

The boundary bore (PF214MW-1) had a rising water table up to middle of 2021 due to the nearby water storages/tailings dams. The monitoring at PF214MW-1 indicated some mounding of the water table from nearby water storages. Seepages were not observed by E2W at the base of the bund walls next to PF214MW-1 on 15 September 2022 or 16 August 2023.

The water quality of the deep new bores (PF166MW-2D, PF167MW-3D, PF167MW-4D) within the Hawkesbury Sandstone are like the existing bores. The water quality in the dams (CWD and Por167 spring) are similar to shallow bores (MW-4s) situated within the Maroota Sands aquifer. The deeper bores (MW-4D) are similar in major ion composition (Na-Cl rich) to shallower bores and dams, however have slightly higher TDS (Appendix E, Piper trilinear & Durov diagrams).

The new wells at Pits 8 & 13 also target the sandstone and Maroota sands aquifer (i.e. sandstone bores: PFPit13MW-7D, PFPit8MW-6D and Maroota Sand bores; PFPit8MW-8A PFPit8MW-8B, PFPit8MW-8C, PFPit8MW-8D, PFPit8MW-8E and PFPit8MW-6s).

The groundwater samples and pond 8 from Pit-8 is not available due to flooding during 2021-2022 and decommissioning of seven wells (PFPit8MW-8A to 8G) due to backfilling of Pit-8. The available well sampling, water analyses and the hydrochemistry are presented in Table 3-14 and in appendix E.

The water monitoring results at Pits 8 & 13 and at wells (PF-3, Table 3-10) indicate similar water quality characteristics (Na-Cl, low TDS, acidic pH) to the Hitchcock Road bores. The deep bore (PFPit13MW-7D) has a higher TDS as it encountered siltstone/shale bedrock at depth (lower permeability formation), whilst the Pond8 pond (2021) is relatively fresh indicating a stormwater runoff source (not groundwater).

The groundwater bores at Pits 8 & 13, and PF-3 indicate minor variations in the water quality due to variations in climate and the geology of the Maroota Sand and sandstone (e.g. ironstone layers, shell grit, pebbles, shale/siltstone layers).

Overall, all the site monitoring bores in both the Hawkesbury Sandstone and in the Maroota Sand show minor variation in Total Dissolved Solids (TDS) over time, with the deeper bores showing a more constant character. The general groundwater flow regime with the sandstone aquifer is shown in Figures 2 to 4.

3.11 Laboratory Quality Control

The laboratory quality control samples (ALS laboratory duplicates, procedure blanks and control spikes) returned results within the required limits and acceptance criteria. The quality control data generated by the laboratory are presented with the laboratory certificates in Appendix B-1 & B-2.

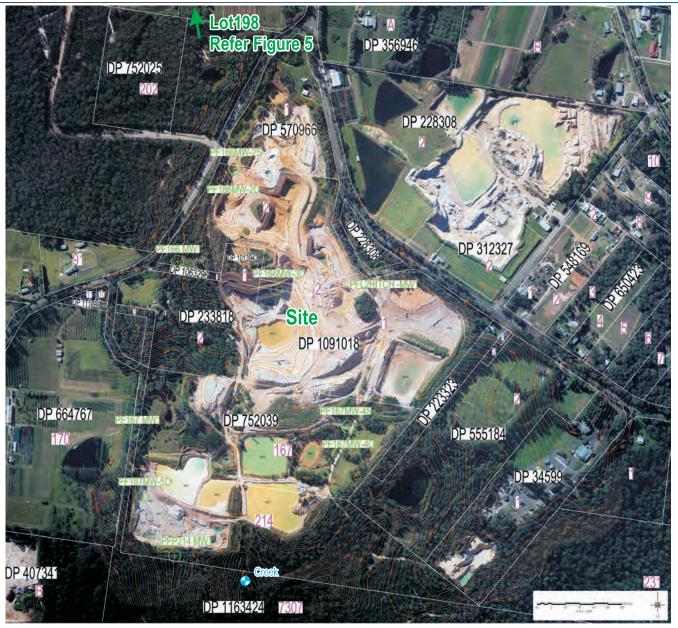
ALS Environmental is NATA accredited for the analyses performed. Based on the evaluation of the data, it is assessed that the accuracy and precision of the analytical data generated in the sampling round, as reported by the analytical laboratory, are acceptable as a basis for interpretation. The short holding time for laboratory PH measurements is supplemented with field readings using a calibrated field chemistry meter (YSI professional series).

4 CONCLUSIONS

The assessment of the data collected on the groundwater levels and quality in the Maroota Hitchcock Road site, some of which represent the oldest data available to the groundwater study carried out by the DLWC (now Office of Water) indicate the following:

- Water levels in the Maroota Sand aquifer generally respond to the rainfall pattern. The rainfall in the past three years (2020-2021 @ 1264.4 mm, 2021-2022 @ 1633.5 mm. and 2022-2023 @ 1246.2mm) were substantially above the annual average.
- Water quality in the Maroota Sand aquifer varies with rainfall recharge due to variations in aquifer characteristics and rainfall from 2013 to 2023. The recent 2022-2023 sampling indicates variability of the EC/TDS trend in PFL2HitchMW-1 and PF214MW-1 due to the variable climate. The previous water level rises at PF214MW-1 and stabilisation in 2022 and 2023 relate to the construction of nearby water storages.
- Water was not pumped from the Portion 167 Spring for the 2022 to 2023 period (i.e. last pumpage in November 2021). PFF allocation (44 ML) was not utilised due to high water levels and rainfall at the site.
- Previous pumpage records for the two production bores (PF198PB1=12.027 ML, and PF198PB2=1.595 ML) in 2017-2018 was 13.622 ML, whilst during the 2018-2019 period was 9.947 ML (PB-1 only). During 2019-2020, the existing production bore (PB-1) and a new bore (PB-3, replacing PB-2) recorded 26.745 ML. The combined pumpage from PB-1/PB-3 during 2020 to 2021 was 14.248 ML. The pumpage during

2021-2022 was 20.201 ML (PB-1), and 17.685 ML (PB-1 only) for 2022-2023 period. Groundwater pumpage has remained substantially below the allocation of 56 ML/year (i.e. PB-1 only). The two bores (PB-2/PB-3) have been decommissioned due to high iron in the groundwater and pump clogging issues.


- The chemical composition of the groundwater in the deep aquifer of the Hawkesbury Sandstone (water supply bores in Lot 198) has an overall character that indicates that rainfall recharge occurs readily.
- The new monitoring wells (6) installed in 2017, three additional wells at the new site (PF-1, PF-2, PF-3), and 8 new wells (2020) at Pits 8 & 13 were used to better assess groundwater levels, the flow regime and pit extraction depths. The 7 wells (PFPit8MW-8A to 8G) located in the quarry floor of Pit-8 were decommissioned in late 2022/early 2023 due to backfilling operations. The two previous pit extraction areas (locations near PF167MW-3D and PF167MW-5D) were backfilled in 2017-2019 to meet the required groundwater buffer zone (>2m above the high water table).
- The current sand extraction operations in the Hitchcock Road area operate in a manner that does not appear to have an adverse impact upon the groundwater sustainability and meets the DA Approval Conditions.

The data collected during the year are available to Water NSW for their continued study in the area.

FIGURES

LEGEND


PFP214MW1 O

Groundwater Monitoring Location

Creek Sample Location

Date: 22 August 2023

Landair Pty Ltd; May 2017 Topography Shown Landscape constantly changing due to extractions

Scale

Date: 22 August 2023

LEGEND

PF167MW-4S

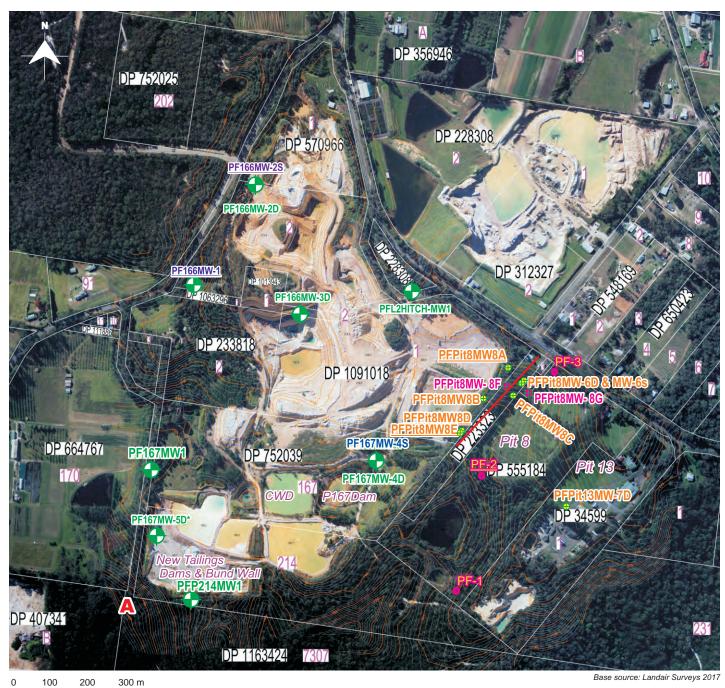
Well location (Maroota Sands)

PF167MW-4D + Well location (Sandstone aquifer)

> Water sample location (E2W; 20 April 2017) x-5

Tail-2 Tailing dam (active settlement)

Dam-9 Dam (former extraction pit, undergoing rehabilitation)


> Pit 8 Dam; from 2019 to early 2023 (now backfilled) Tail: 4 & 5 from 2019 (former backfilled extraction areas)

Site Layout & Water Storages (2023)

MAROOTA - HITCHCOCK ROAD SITE

Reference: E2W_224_15.cdr Figure 1 A

LEGEND

PF167MW-4S Well location (Maroota Sands)

PF167MW-4D • Well location (Sandstone aquifer)

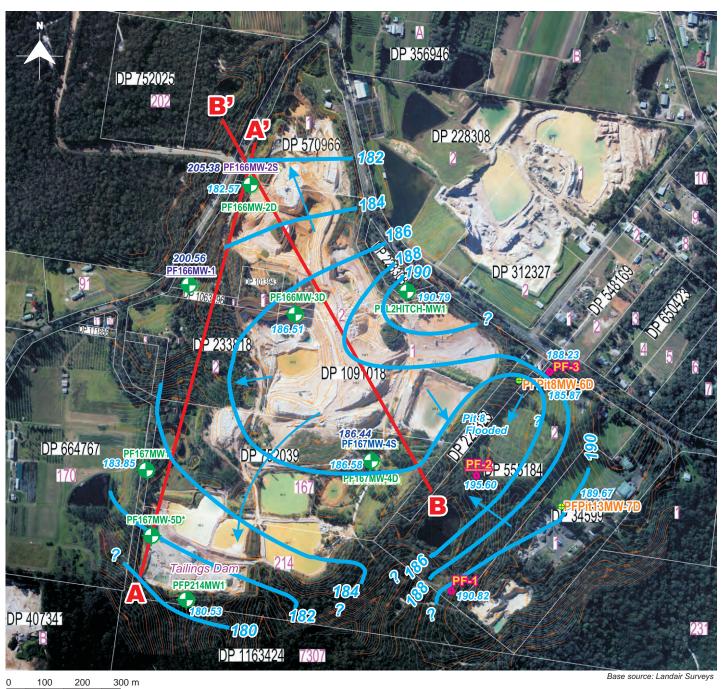
• Well Location (2019)

PFPit13MW-7D
New Wells; Pits 8 & 13 (Aug/Sept 2020)

PFPit8MW- 8F ♦ New Wells; Pit 8 (22 Sept 2021)

Pit-8 wells decommissioned in early 2023 (PFPit8MW-8A to 8F)

Note:


Scale

Perched Water Table (Maroota Tertiary Sand): PF166MW-2s, PF167MW-4s, PF166MW-1, PF-2 PFPit8MW-8A, PFPit8MW-8D, PFPit8MW-8E

Site Layout & Groundwater Monitoring Well Network (2023)

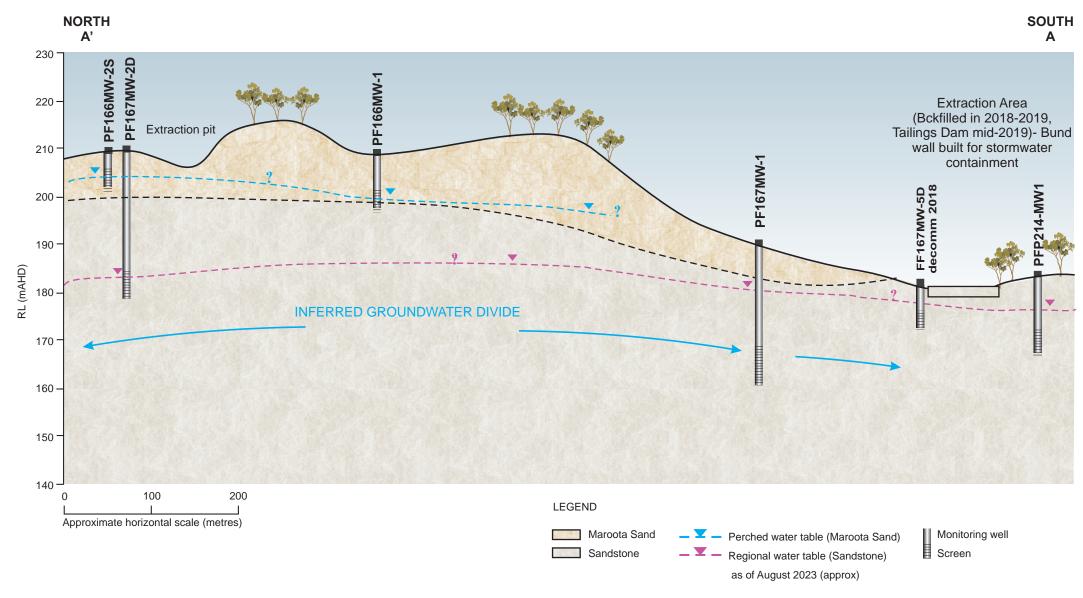
Date: 22 August 2023 MAROOTA- HITCHCOCK ROAD SITE Reference: E2W_224_15.cdr

LEGEND

◆ PFPit13MW-7D

Scale

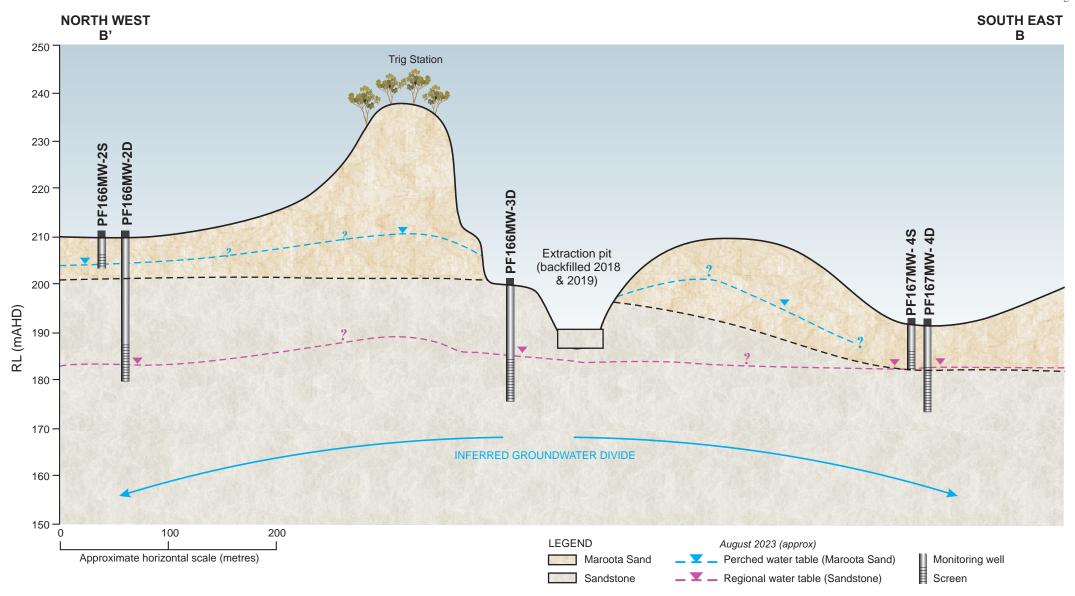
Date: 23 August 2023


New Wells (Aug/Sept 2020) at Pits 8 & 13 (Wells at Pit8;MW-8A to 8G; not shown, decommissioned in early 2023) Note:

Perched Water Table (Maroota Sand): PF166MW-2s, PF167MW-4s, PF166MW-1, PF-2 Site Plan & Inferred Groundwater Flow Regime (August 2023)

MAROOTA - HITCHCOCK ROAD SITE

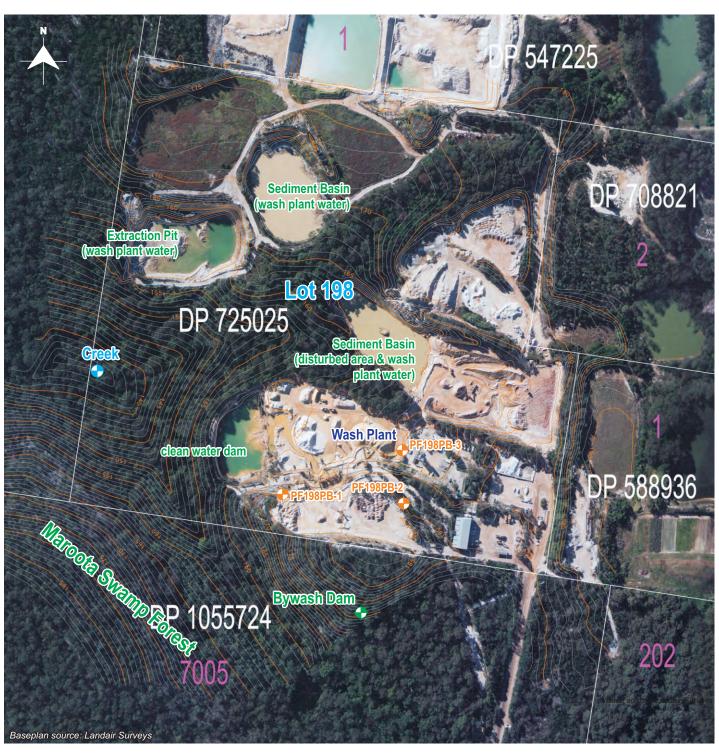
Reference: E2W_224_15.cdr Figure 2



INFERRED HYDROGEOLOGICAL SECTION (N-S)

Date: 22-8-2023 MAROOTA - HITCHCOCK ROAD SITE

Reference: E2W_224_17.cdr



INFERRED HYDROGEOLOGICAL SECTION (NW-SE)

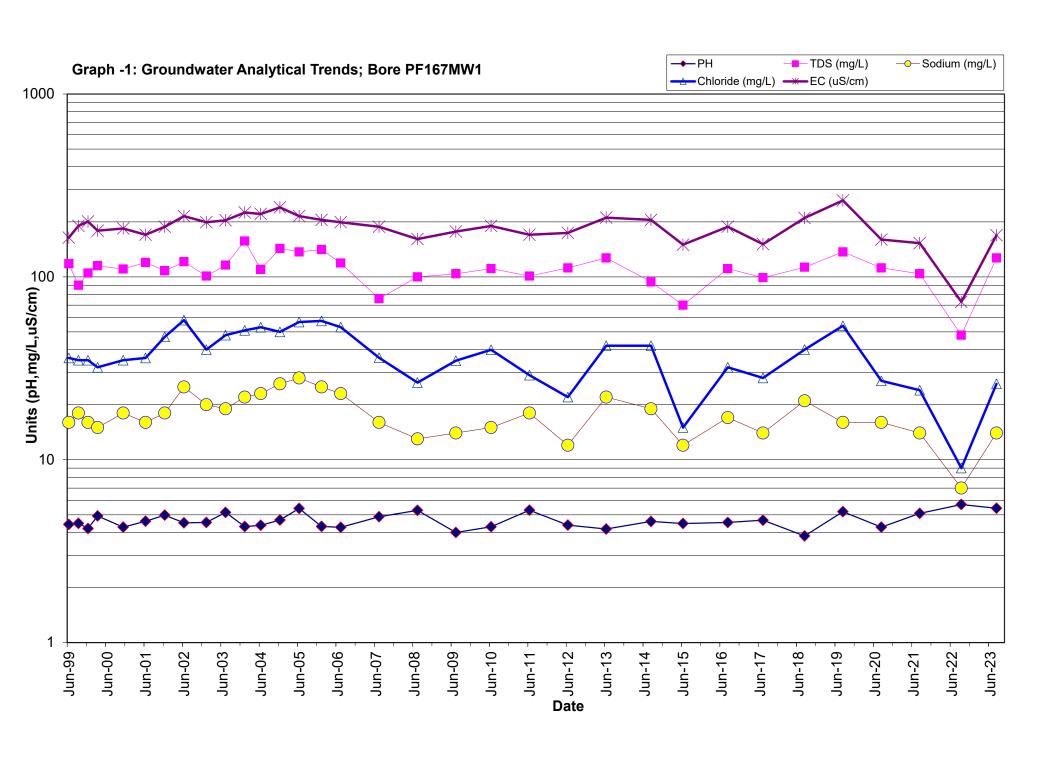
Date: August 2023 MAROOTA - HITCHCOCK ROAD SITE

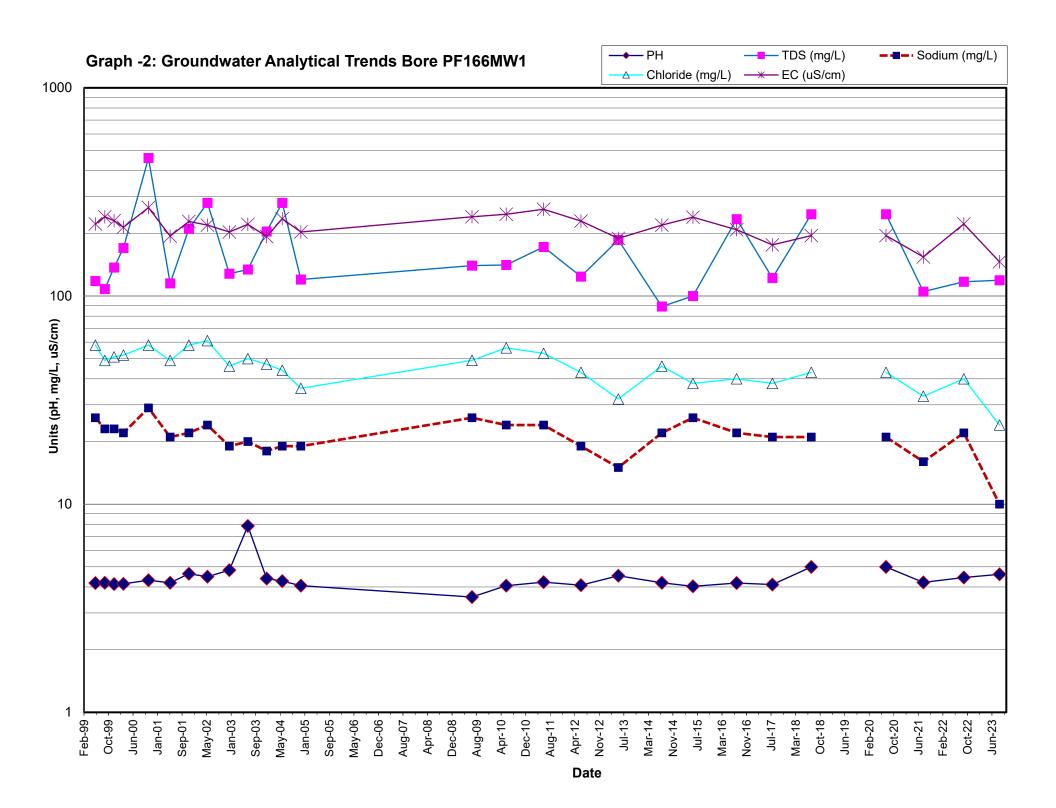
Reference: E2W_224_16.cdr

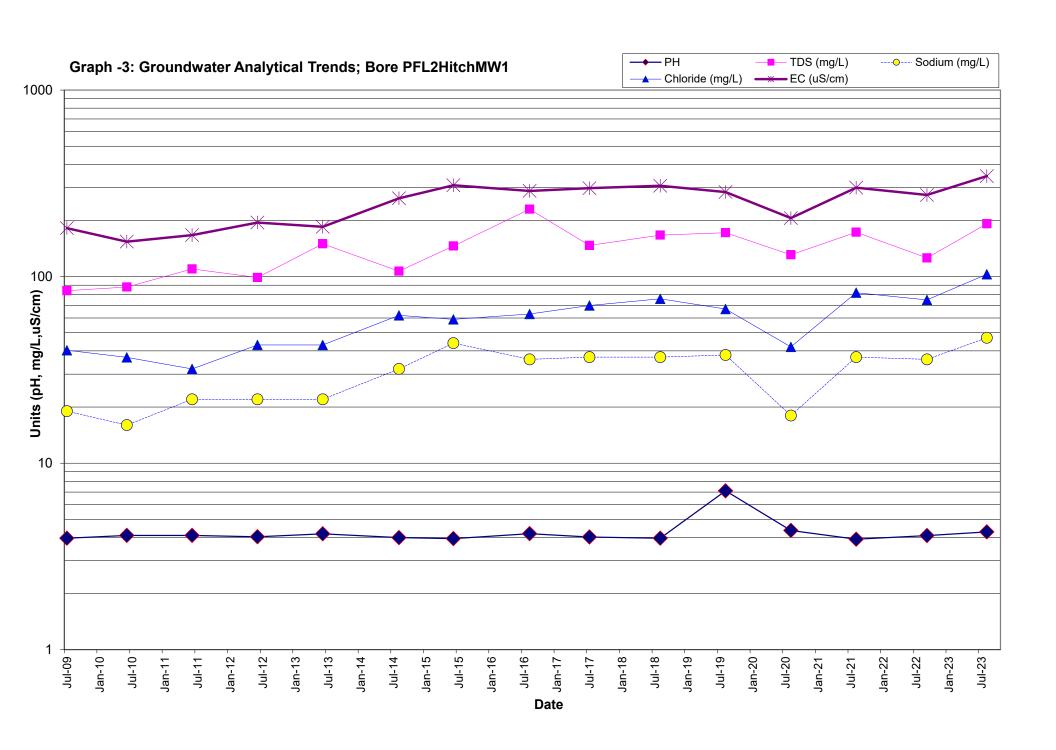
0 30 60 90 120 150 Scale (metres)

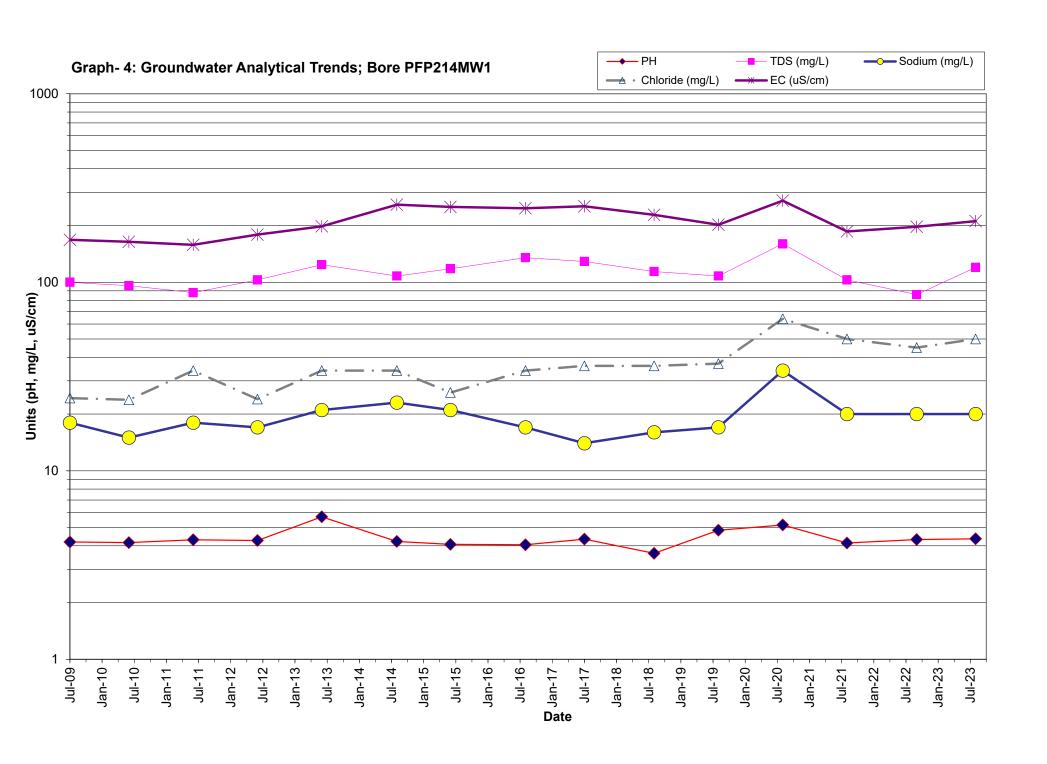
Reference: E2W_224_22.cdr

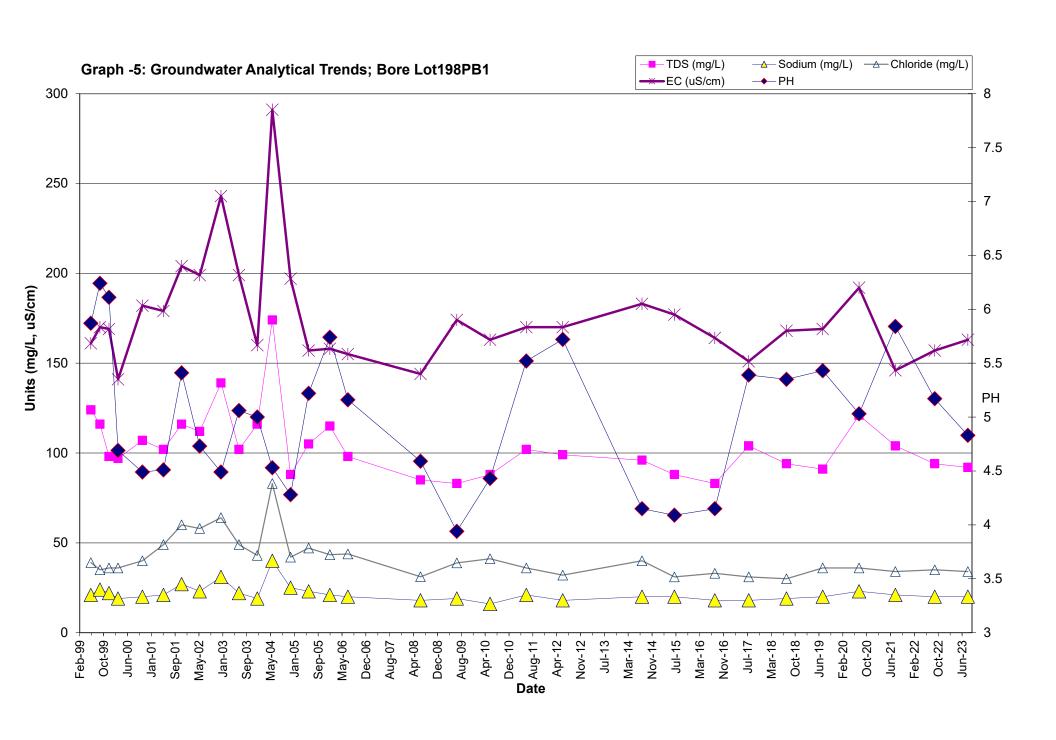
LEGEND

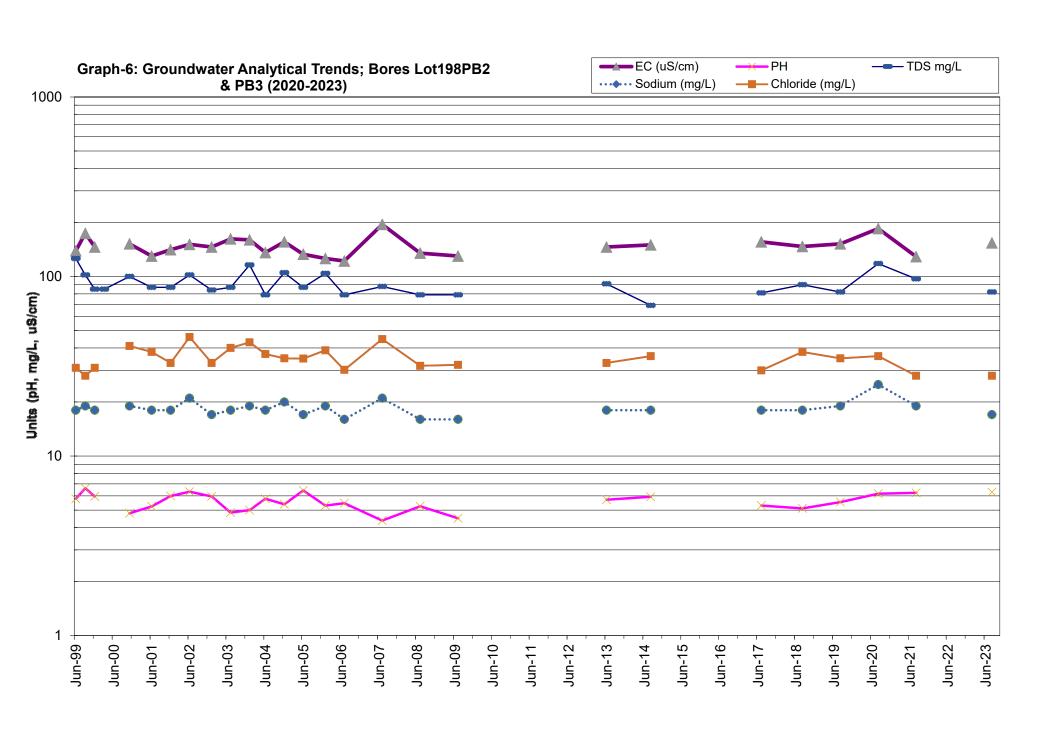

PF198PB-1 Production Bore (sandstone aquifer)
PF198PB-3 installed in 2019 to replace PF198PB-2

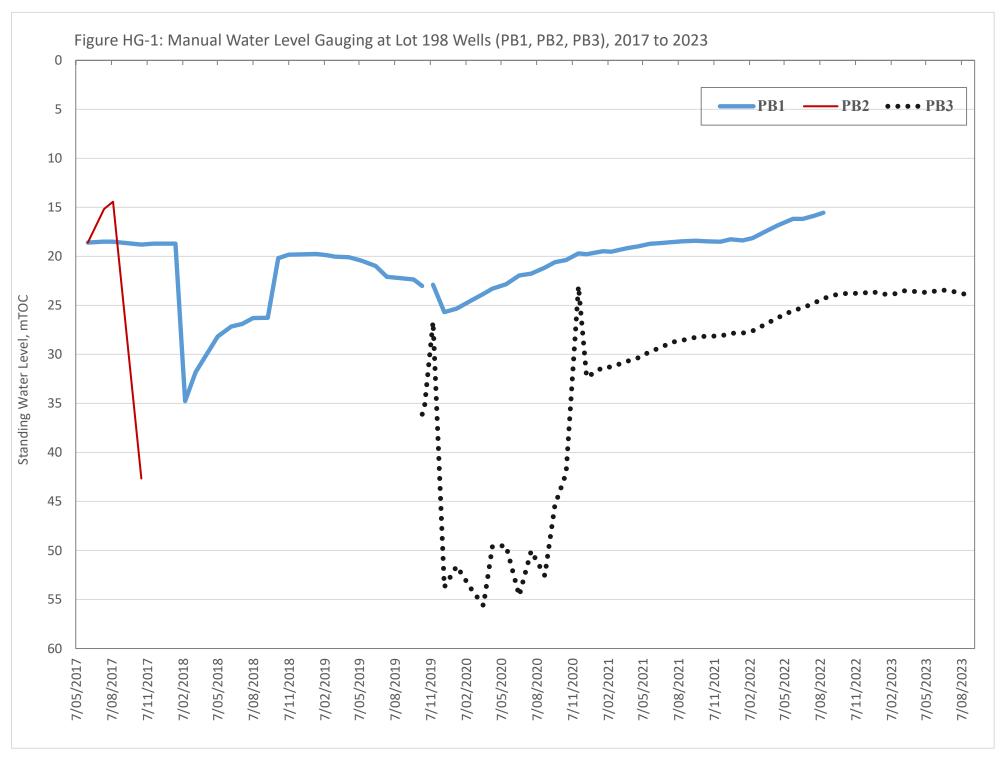

Site Layout for Lot 198 (2023)

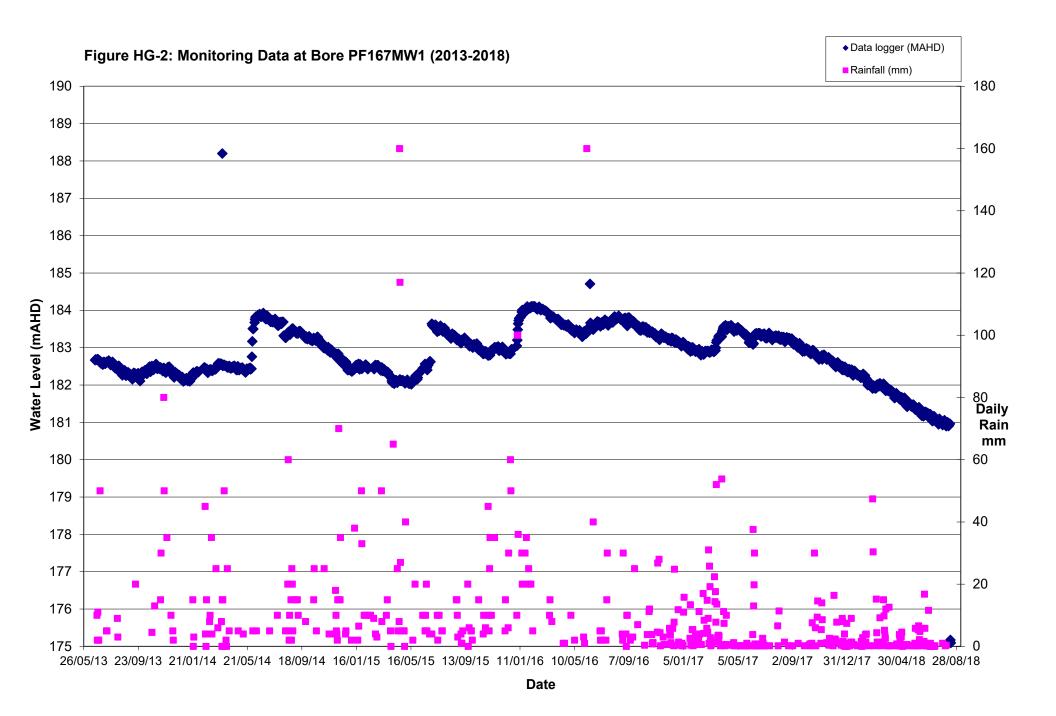

Date: August 2023 PF Formation: Maroota Lot 198 Site

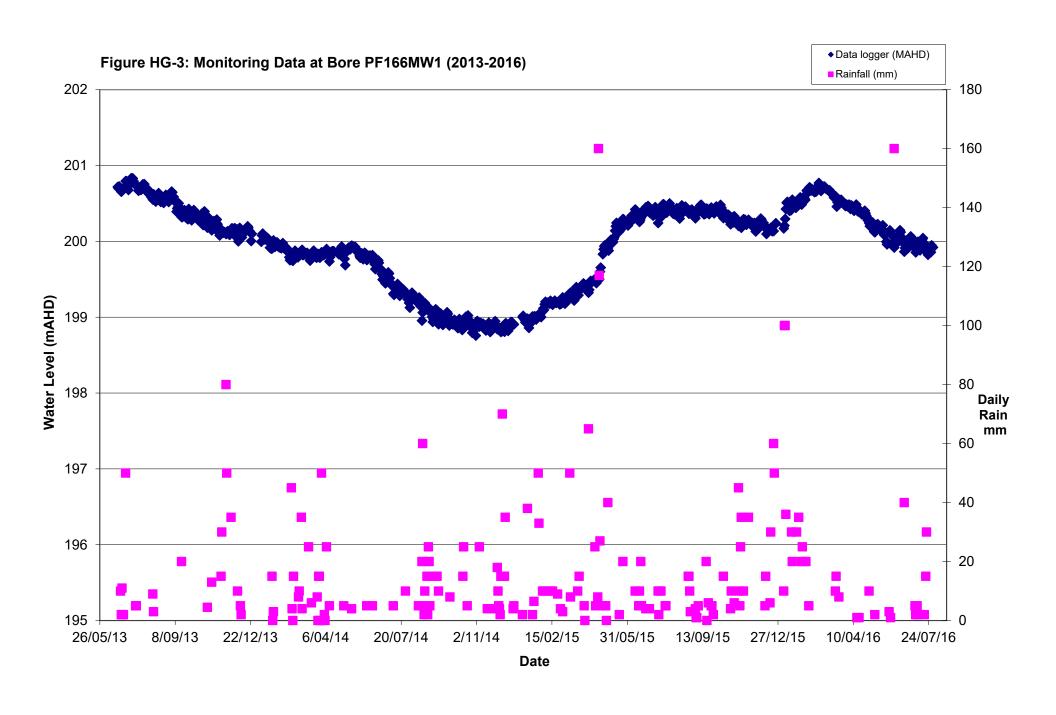


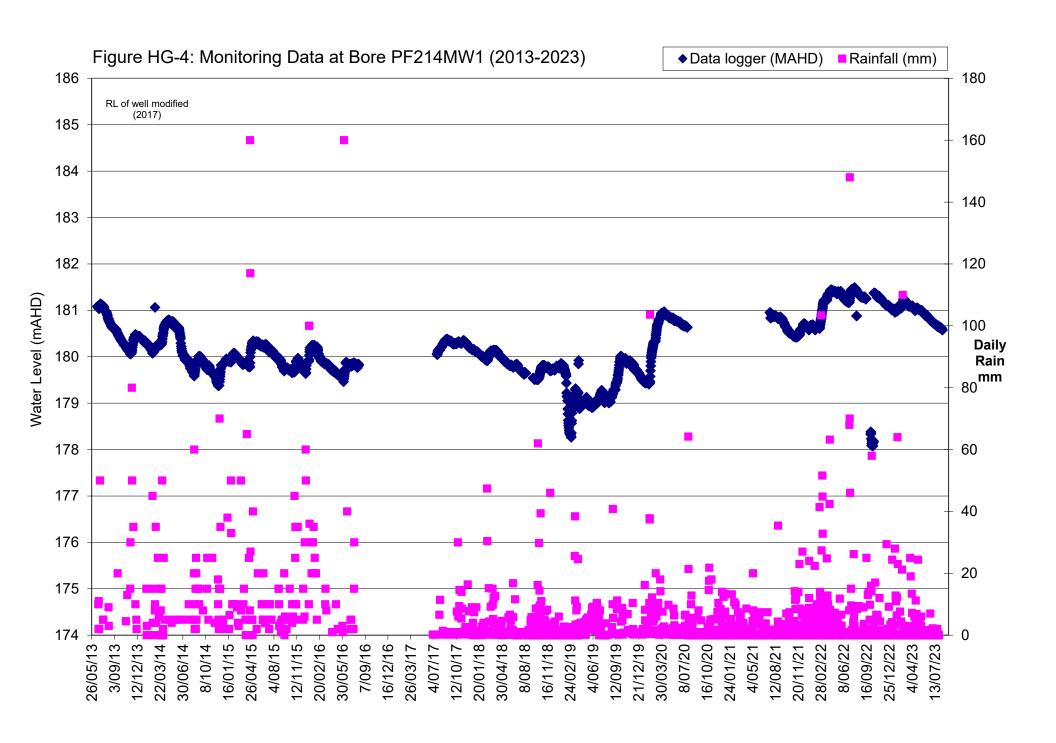

HYDRO-CHEMICAL GRAPHS

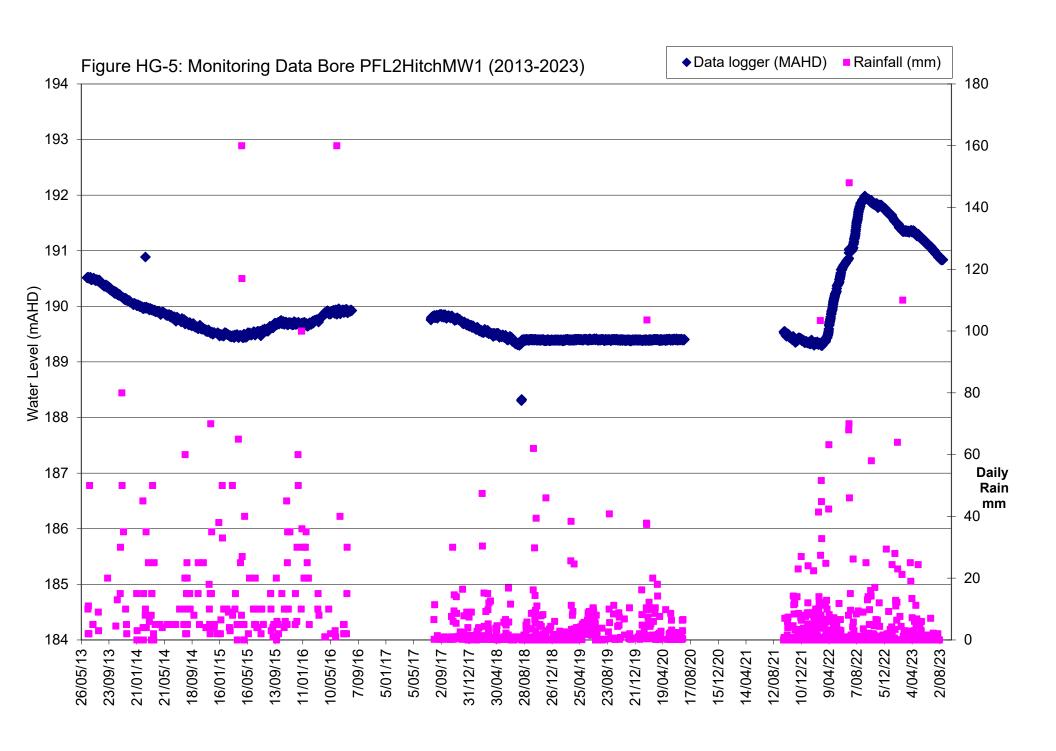


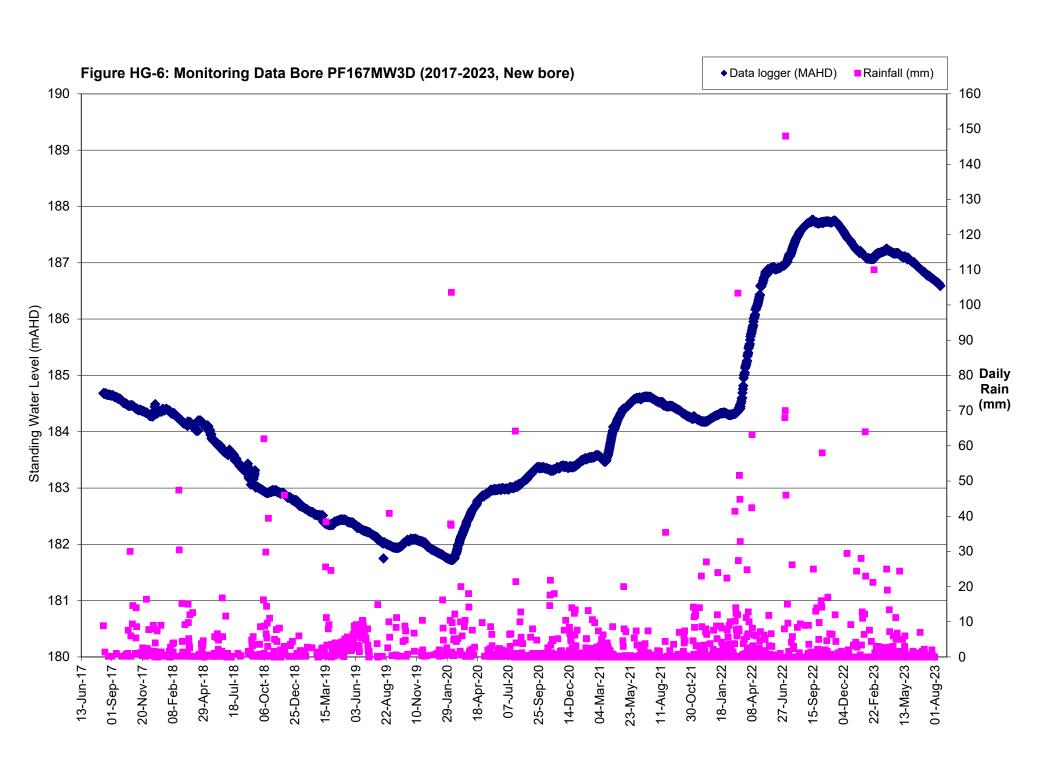


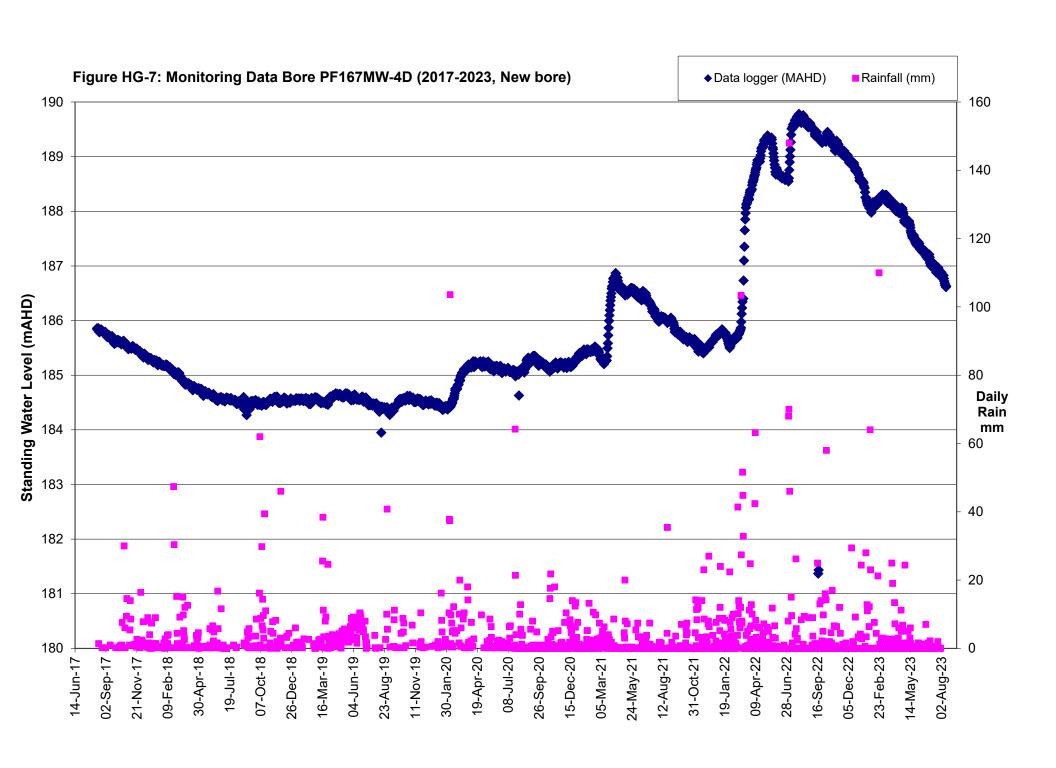


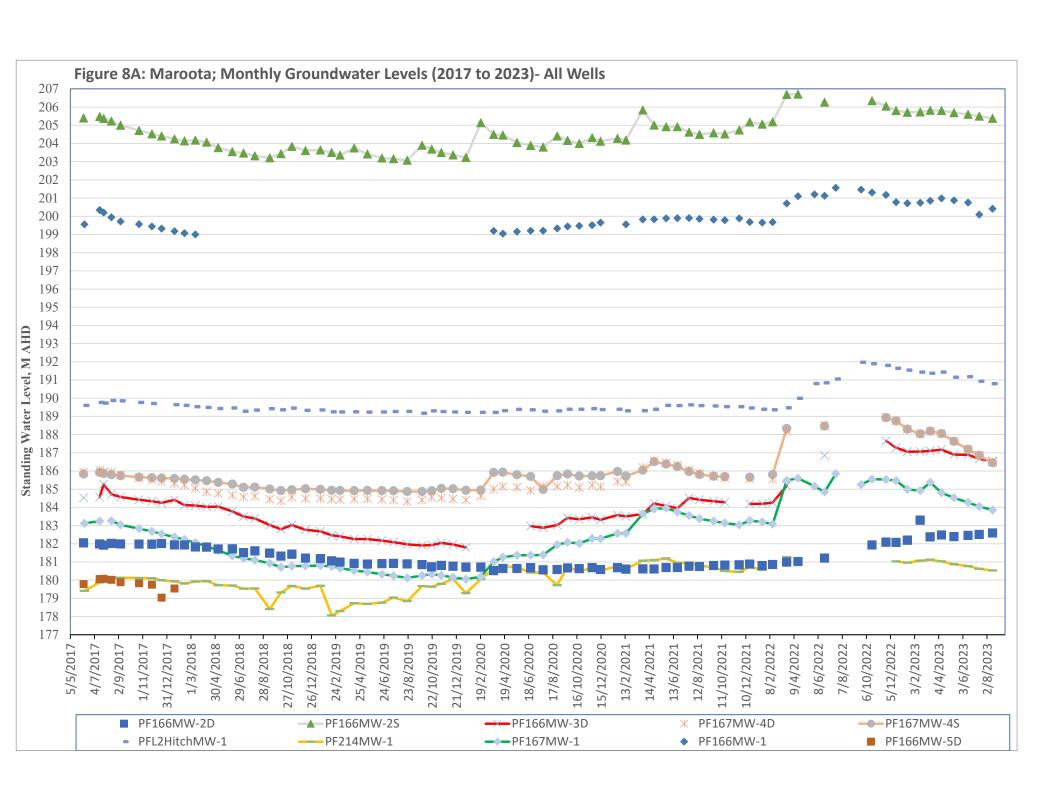


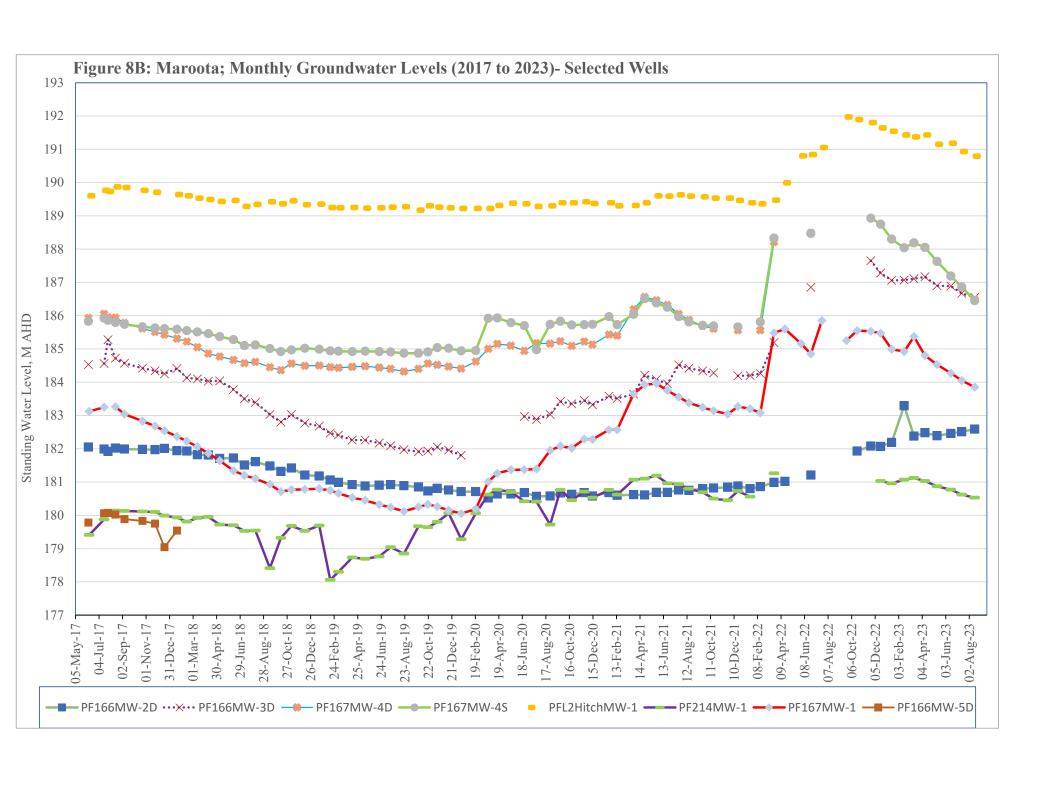


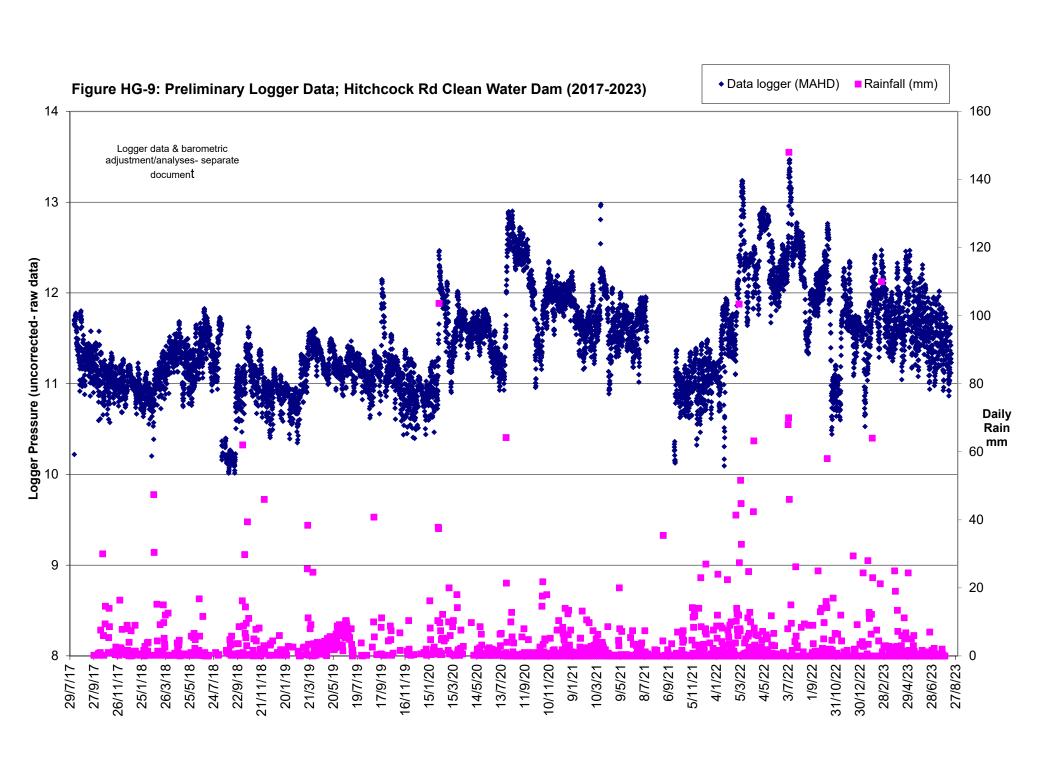

HYDRO-GRAPHS

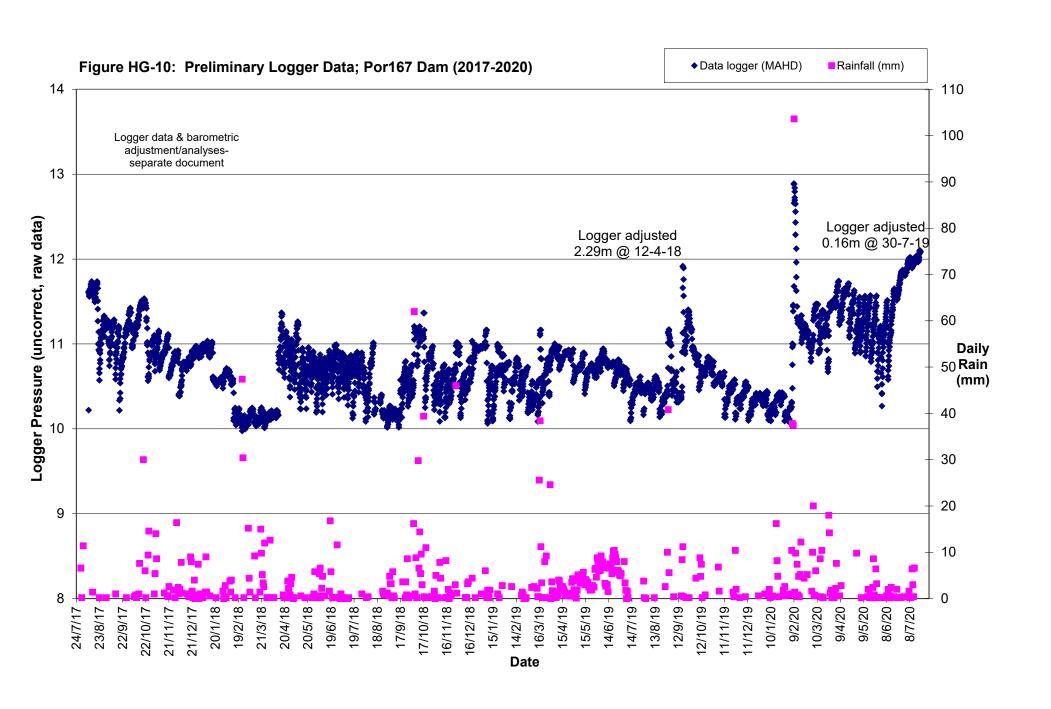


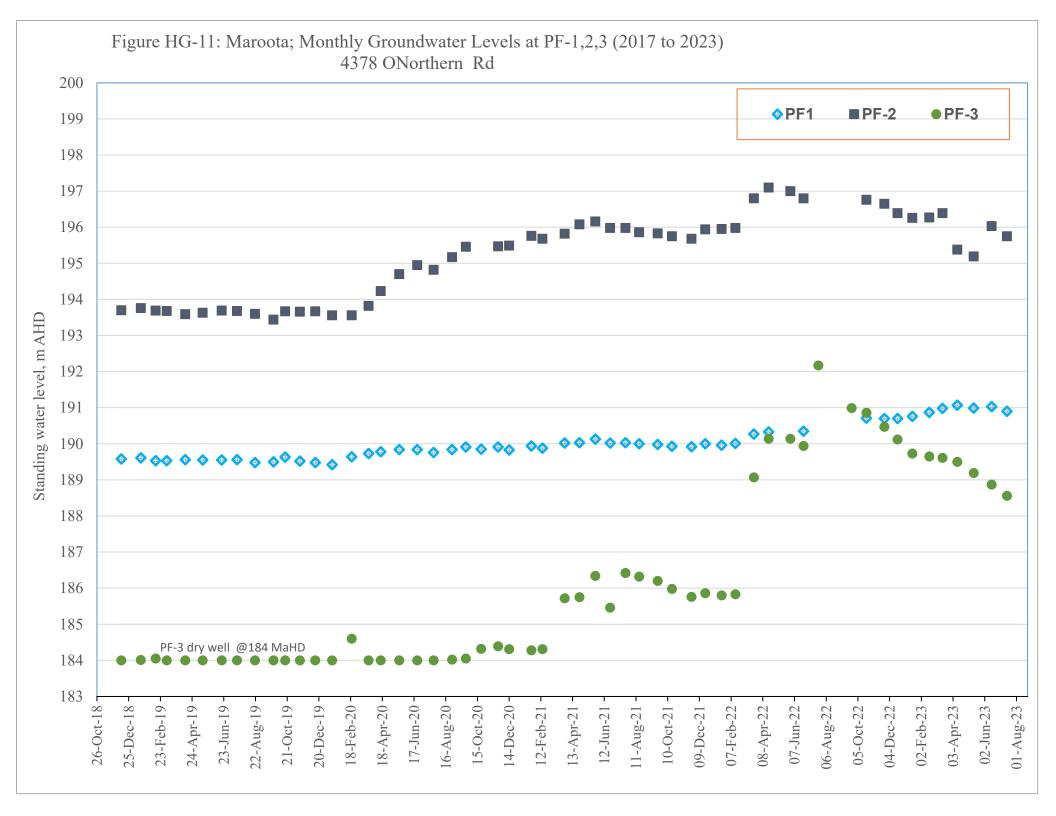


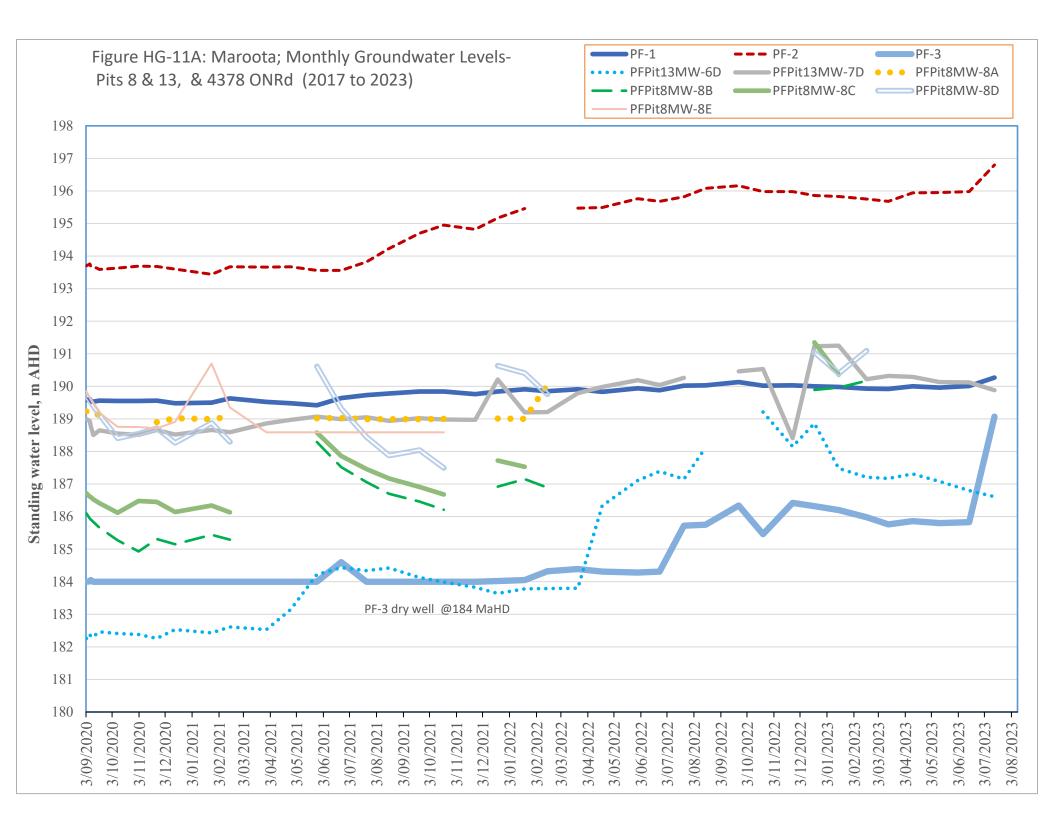


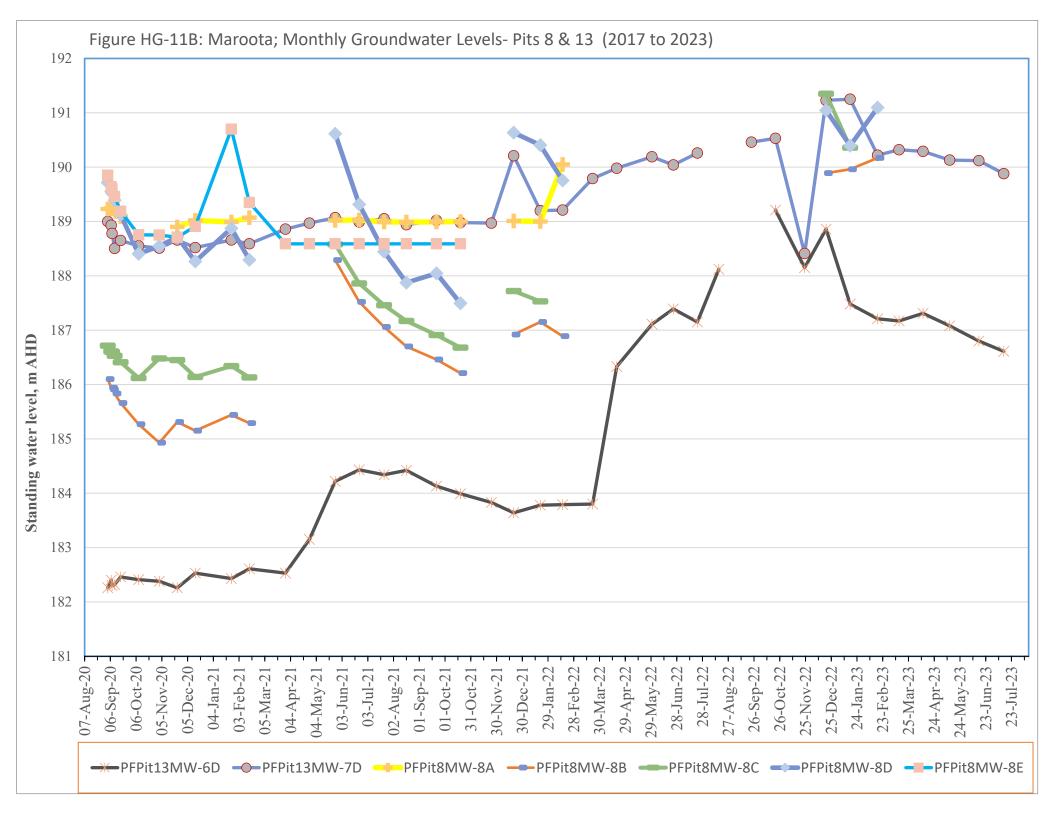












TABLES

Table 1: Maroota Climate (2021-2023)

Month	PFF Rainfall (mm, monthly)	BOM Maroota Rainfall (mm, monthly)	Comments
July '2021	14	30.4	
August	43.4	66.4	
September	15.4	23	
October	24.6	47.4	
November	123.4	183.6	
December	69.6	129.3	
January	83.4	112	
February	171.8	250.6	
March	373.2	581.2	
April	151.4	115.8	
May	52.5	87.6	
June '2022	2.6	6.2	
Total (yr)	1125.3	1633.5	Above Average annual rainfall
July '2022	NA	407.8	BOM station is
August		28	close to PFF site
September		87.2	
October		133.2	
November		26.4	
December		45.4	
January		196	
February		147	
March		57.4	
April		85.2	
May		18	
June '2023		14.6	
Total (yr)		1246.2	Above Average annual rainfall

Note:

Data source: PFF Weather station

BOM (Station ID: 067014 Old Telegraph Road, Maroota)

Table 2A: Monitoring Wells, Water Level Gauging & Chemistry (15 & 16 August 2023)

Maroota - Hitchcock Road

Sample ID	SWL (m btoc) 15 & 16 August 2023	PVC Stickup *	BOH (mbgl)	Ground RL	RL (TOC) *	Reduced SWL (mAHD) 15 & 16 August 2023	Co-ordinates	рН	EC (uS/cm)	DO (%)	DO (mg/L)	Redox (mV)	Temp (°C)	Aquifer
	Existing Wells (nev	w site)												
PF-1*	12.08	0.93	19	201.97	202.9	190.82	313919.48 & 6294505.13	NA	NA	NA	NA	NA	NA	deep sandstone
PF-2*	5.4	0.9	13.28	200.1	201	195.60	313950.78 & 6294789.93	NA	NA	NA	NA	NA	NA	maroota sand
PF-3	30.97	0.75	32.2	218.45	219.2	188.23	314159.95 & 6295046.84	3.99	242	15	1.51	230	17.5	deep sandstone
1	Existing Monitoring	g Wells												
PF214MW-1	4.73	0.8	18	184.45	185.26	180.53	313286.41 & 6294508.34	3.86	180	34	3.2	212	16.6	deep sandstone
PF167MW-1	4.1	0.3	23.8	187.85	187.95	183.85	313190.79 & 6294816.05	4.33	154	12	1.16	136	17.3	deep sandstone
PF166MW-1	9.79	0.55	11.8	209.78	210.35	200.56	313293.61 & 6295256.65	3.94	128	42	4.01	188	18	maroota sand
PFL2HitchMW-1 (note 1)	34.43	-0.02	43.5	225.13	225.3	190.87	313810.71 & 6295241.46	3.68	320	74	6.9	191	18.2	deep sandstone
New	Monitoring Wells	(May 2017)												
PF167 MW-2D	27.33	0.6	29.4	209.28	209.9	182.57	313438.92 & 6295492.65	4.43	144	63	6.2	199	16.7	deep sandstone
PF167 MW-2s	4.62	0.7	5.1	209.3	210.00	205.38	313439.64 & 6295494.49	3.77	231	68	6.7	205	15.8	maroota sand
PF167 MW-3D	12.16	0.75	23	197.93	198.67	186.51	313545.67 & 6295186.86	3.92	138	78	7.8	107	15.9	deep sandstone
PF166 MW-4D	6.81	0.5	15.5	192.93	193.39	186.58	313727.56 & 6294836.89	5.34	162	43	4.2	158	16.3	deep sandstone
PF166 MW-4s	7.00	0.5	8	192.93	193.44	186.44	313725.86 & 6294836.93	4.41	147	20	2.04	178	15.6	maroota sand

Notes:

SWI= standing water level Water level gauging undertaken by D.Parisotto (E2W) using an acoustic water level probe

BOH= bottom of well *TOC= top of 50mm PVC casing (reference point for water level gauging)

E2W Field parameters measured by D.Parisotto on 15 & 16 August 2023 during water sampling (pH, EC, DO, Eh and temperature using YSI professional series hired from AES)

Redox (Eh mV, based on Ag/AgCl electrode) and conversion from Orp (mv) to Redox by adding 200 MV

Table 2B: Monitoring Well Details & Water Table Gauging at Pits 8 & 13 (15 & 16 August 2023) Maroota - Hitchcock Road & Pits 8 & 13 Area

Sample ID	SWL (btoc) 15 & 16 August 2023	PVC Stickup *	BOH (mbgl)	RL (mTOC) m AHD	Reduced SWL (mAHD) 15 & 16 August 2023	nH	EC (mS/cm)	DO (%)	DO (mg/L)	Redox (mV)	Temp (°C)	Aquifer	Comments
New Wells installed	at Pit 8 Floor duri	ng Septen	nber 2020										
PFPIT8MW-8A	NA	1.15	7.7	196.64								Maroota Sand	Pit8 backfilled & well decommissioned
PFPIT8MW-8B	NA	1.15	10.3	193.77								Maroota Sand	Pit8 backfilled & well decommissioned
PFPIT8MW-8C	NA	1.28	8.8	194.5								Maroota Sand	Pit8 backfilled & well decommissioned
PFPIT8MW-8D	NA	1	7.3	184.45								Maroota Sand	Pit8 backfilled & well decommissioned
PFPIT8MW-8E	NA	0.95	4.5	187.85								Maroota Sand	Pit8 backfilled & well decommissioned
New Wells installed	outside of Pits 8 8	13 during	August 20)20	•	•		•					

Sample ID	SWL (btoc) 15 & 16 August 2023	PVC Stickup m	BOH (mbgl)	RL (TOC)	Reduced SWL (mAHD) 15 & 16 August 2023	рН	EC (mS/cm)	DO (%)	DO (mg/L)	Redox (mV)	Temp (°C)	Aquifer	Comments
PFPIT8MW-6D	23.91	0.52	38.8	209.78	185.87	4.51	173	30	2.9	113	17.1	deep sandstone	clear water
PFPIT8MW-6s	dry	0.42	10.8	225.13	NA							Maroota Sand	dry well
PFPIT13MW-7D	24.16	0.5	42.5	225.13	200.97	3.61	381	48	4.6	227	18.5	deep sandstone	cloudy brown water

Notes:

NA= not available

SWI= standing water level

BOH= bottom of well

E2W Field parameters measured by D.Parisotto on 15 & 16 August 2023 during water sampling (pH, EC, DO, Eh and temperature using YSI professional series hired from AES) Redox (Eh mV, based on Ag/AgCl electrode) and conversion from Orp (mv) to Redox by adding 200 MV

Table 3A: Summary of Existing Monitoring Wells (Hitchcock Road, 2023) PF Formation at Maroota

	PF167MW1	PF166MW1	PFL2HitchMW1	PFP214MW1	Lot 198PB1	Lot 198PB3	Lot 198PB2	Por 167 Spring
Ground Elevation (mAHD)	187.64	209.94	226	186.5				184
Lot & DP	Lot 167 DP 752039	Lot 2 DP570933	Lot 1 DP109 1018	Lot 167 DP 752039	Lot 198 DP 752025	Lot 198 DP 752025	Lot 198 DP 752025	Lot 167 DP 752039
License No	GW100649	GW104410	GW110746	GW110747	GW101528	GW101527	10WAL1093550	GW104614
Alocation (ML/yr)						Combined 56 ML /yr		44 ML/year
Approval Number					10AL109354	10WA109355	GW101527	10WA114809
	Sydney Central		Sydney Central	Sydney Central	Sydney Central	Sydney Central	Sydney Central	
Groundwater Resource	Sandstone	Maroota Tertiary Sand	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Maroota Tertiary Sand
Date Installed	1996	1998	2009	2009	1998	October 2019	1998	1995
Drilled Depth (m bgl)	23.8	11.8	43.5	18	150	150	138	4
Well Screen Interval (mbgl)	20-23 ?	4.9-10.9	31- 43	11.5- 17.5	23.4 - 140	50 to 150 (open hole)	35.5-140	
Aquifer Permeability (K m/day)	0.1 L/sec	NA	0.1 L/sec	0.1 L/sec	0.5 L/sec	1.6 L/sec	2.6 L/sec	10 L/sec
Water Levels (mbgl)	4	10.57	36	5.6	20.58	48	35.36	(~4 m) 180 MAHD
Water Type	Na-Cl	Na-SO4	Na-Cl	Na-Cl	Na-Cl	Na-Cl	Na-Cl	
PH	4.5	4	4	4.1	4.1		5	
Total Dissolved Solids, TDS	100	100	140	120	100		150	
Data Logger	Yes	Yes	Yes	Yes	No	No	No	No
Water Bearing Zones (mbgl)	6 to 8m	Na	Na-Cl	11.5-12	15.5-18.5m , 26-27m, 108 -114.5m, 188.5-121m	101 to 102m, 145 to 146m	56.5-57.2m, 74-75.55m	
Geology	0-2m Sand 2-10m Wet gravel 10-23.8 m Weathered Sandstone	0- 0.7m Sand 0.7-6.5m Sandy Clay 6.5- 11.5m Sand 11.5 -11.8m weathered sandstone	0- 18.5m Clay Sandy 18.5- 24.5m qtz gravel 24- 34m Clay & gravel 34 -43.5m weathered sandstone & clay	0- 0.5m Sandy 0.5- 18m sandstone - soft with clay	0-150 m Sandstone. Some interbedded Shale; 44-45m, 51- 53.5m, 114.5-188.5m, 134.4-135m	Sandstone: 0-31 m, & 62-150m Shale; 31-62m	0-138 m Sandstone. Some interbedded Ironstone; 48.5-49m, Shale; 49-50.5m, 58.5- 60m	Inferred sand/gravels (Maroota)
Comments	located on south west boundary	located on west boundary	located on east boundary	located on south boundary	Allocation is Under utilised. Pumping bore and supply to sand wash plant	Cased to 50m, open hole below 50 to 150m	Pumping bore and supply to sand wash plant. Treated for Fe floc- not sampled for 2 yrs. Bore replaced bhy PB-3 at concrete wash plant	Allocation is Under utilised. Former agricultural use- spring & unlined dam. Previous data logging (URS, 1996-2012) of pond levels

Table 3B: Summary of New Monitoring Wells (Hitchcock Road; 2023) PF Formation at Maroota

	PF166MW-2S	PF166MW-2D	PF166MW-3D	PF167MW-4D	PF167MW-4S	PF167MW-5D#
Ground Elevation (mAHD)	210	210.09	198.67	193.39	193.44	181.54
Lot & DP	Lot 1 DP 570966	Lot 1 DP 570966	Lot 1 DP1013943	Lot 167 DP 752039	Lot 167 DP 752039	Lot 214 DP 752039
		Sydney Central	Sydney Central	Sydney Central		Sydney Central
Groundwater Resource	Maroota Tertiary Sand	Sandstone	Sandstone	Sandstone	Maroota Tertiary Sand	Sandstone
Date Installed	May-17	May-17	May-17	May-17	May-17	1/05/2017 (#Feb 2018)
Drilled Depth (m bgl)	8.5 m	29.4 m	23 m	15.5 m	8 m	9.5 m
Well Screen Interval (mbgl)	4.9 -7.9 m	26.4 -29.4 m	20 -23 m	11.5 -15.5 m	5 -8 m	6.4 -9.4 m
Aquifer Permeability (K m/day)	6.9 * E-01 m/sec	Na	4.57 * E-02 m/sec	1.6 * E-01 m/sec	7.18 * E-02 m/sec	4.95 * E-02 m/sec
Water Levels (mbgl)	4	25	14	8.5	7	2
Water Type	Na-Cl	Na-Cl	Na-Cl	Na-Cl	Ca-SO4	K-Cl
PH	5.39	6.99	5.63	5.85	5.85	5.82
Total Dissolved Solids, TDS	384	549	346	2170	736	1140
Water Bearing Zones (mbgl)	4 to 5.5m	4 to 5.5m	Na	7 to 8 m	7 to 8 m	Na
Geology	0-4m: Sandy Clay 4- 5.5m: Sand 5.5 -8.5m: Sandy Clay	0-4m: Sandy Clay 4-5.5m: Sand 5.5 -8.5m: Sandy Clay 8.5 -29.4m: Sandstone	0-23m: Sandstone	0- 7.1m: Sandy Silt & Clay 7.1 -15.5m: Sandstone	0- 7.1m: Sandy Silt & Clay 7.1 -8m: Sandstone	0 -9.5m: Sandstone
Comments	located on site entrance	located on site entrance	located next to extraction pit	located near Por 167 Dam	located near Por 167 Dam	located on southern extraction area

Table 3C: Summary of New Monitoring Wells at Hitchcock Road- Pits 8 & 13 (2023)

PF Formation- Pit 8 Assessment of Extraction Depths

	PFPit8 MW-6D	PFPit8 MW-6s	PFPit13 MW-7D	PFPit8 MW-8A	PFPit8 MW-8B	PFPit8 MW-8C	PFPit8 MW-8D	PFPit8 MW-8E	PFPit8 MW-8F	PFPit8 MW-8G
Date Well Installed	Aug-20	Aug-20	Aug-20	Sep-20	Sep-20	Sep-20	Sep-20	Sep-20	Sep-21	Sep-21
Ground Elevation (mAHD)	209.53	209.63	213.48	196.64	193.75	194.53	192.82	192.84	195.61	196.12
Base of Bore (m AHD)	169.53	197.13	170.98	188.94	182.75	185.03	184.62	187.84	185.41	188.02
Borehole Status	Groundwater Intersected				Groundwater Intersected	Groundwater Intersected	Dry or Perched	Dry or Perched	Groundwater Intersected	Dry or Perched
Pit 8 Extraction Guide	Yes	NA	Yes	NA	Yes	Yes	NA	NA	Yes	NA
Lot & DP	Lot 2 DP223323	Lot 2 DP223323	Lot 1 DP34599	Lot 1 DP223323	Lot 1 DP223323	Lot 1 DP223323	Lot 1 DP223323	Lot 1 DP223323	Lot 1 DP223323	Lot 1 DP223323
Groundwater Resource	Sydney Central Sandstone	Maroota Tertiary Sand	Sydney Central Sandstone	Maroota Tertiary Sand	Maroota Tertiary Sand	Maroota Tertiary Sand	Maroota Tertiary Sand	Maroota Tertiary Sand	Maroota Tertiary Sand	Maroota Tertiary Sand
Aquifer Characteristics	Regional	Regional	Regional	Perched- spillway	Regional	Regional	Perched- near Dam	Perched- near Dam	Regional	Regional
Drilled Depth (m bgl)	40	12.5	42.5	7.7	11	9.5	8.2	5	10.2	8.1
Well Screen Interval (mbgl)	32.8 -38.8m	4.8 - 10.8m	36.5 - 42.5 m	4.7 - 7.7 m	7.3 - 10.3 m	5.8 - 8.8 m	5.8 - 7.3 m	3.1 - 4.6 m	7.2 - 10.2 m	5.1 - 8.1 m
Permeability or Yield	Low (<0.2 L/sec)	NA	Low (<0.2 L/sec)	Low-moderate	Low-moderate	Low-moderate	Low-moderate	Low-moderate	Low-moderate	Low-moderate
Initial Water Levels (mbgl)	27	dry	25	7.7	8	8	4	3	9	dry
Water Bearing Zones (mbgl)	32 m & 38 m	NA, dry	40 m	7 - 7.7 m	8- 11 m	8- 9 m	4- 6.5 m	3 -5 m	2.5 - 10.2 m	2.5 - 8.1 m
Local Geology	0- 28m: Interbedded Sand, silt, gravel, & clay- brown. 28- 40m: Sandstone, brown. weathered some pebbles & ironstone	0- 12.3 m: Interbedded Sand, silt, gravel, brown 12.3m hard layer (sandstone, Fe)	0-1m: Clayey Silt, brown. 1- 42.5m: Interbedded Sandstone, Siltstone & Shale- brown to grey	0-0.5m: Sandy Clay, brown 0.5- 7.1m: Interbedded Sands, Silt & Clay, brown	0- 0.7m: Sandy Clay, brown 0.7 -11m: Interbedded Sand,Silt & Gravel, minor clay & ironstone, brown	0- 9.2m: Interbedded Sand, Silt & Gravel, minor clay 9.2m: Sandstone, hard	0- 6.5m: Interbedded Sand, Silt & Gravel, minor clay 6.5 -8.2m: Sandstone, brown & weathered	0- 5m: Interbedded Sand, Silt & Gravel, minor clay, brown	0- 10.2m: Interbedded Sand, Silt & Gravel, minor clay, brown	0- 8.1m: Interbedded Sand, Silt & Gravel, minor clay, red/brown with multiple hard ironstone layers
Comments	Located rear of firestation & residence	Located rear of firestation & residence	Located rear of commercial property/aggregate supplier	Located on floor of Pit 8- north end	Located on floor of Pit 8- north	Located on floor of Pit 8- north east corner	Located on floor of Pit 8- south end near pond	Located on floor of Pit 8- south end near pond	Located on floor of Pit 8- north end near MW-8a	Located on floor of Pit 8- north end near MW-6s. Difficult drilling to ironstone layers
Well Status	Active monitoring	Active (dry well)	Active monitoring		A	Il wells decommissioned in	late 2022 and early 2023 du	e to backfilling of Pit 8 quar	ry	

New groundwater monitoring wells installed in August & September 2020 to guide the Pit Shell Plan.

Additional groundwater monitoring wells (2) installed on 22 Sept 2021 to assess gw flow patterns & verify regional WLs

NA

Shallow well used to verify high water levels/buffer zone and to identify perched water system

Refer to borelog/well cvonstruction records for details of geology and well construction

Tables 3-1 to 3-2: Maroota Hitchcock Road- Water Analyses (1999 to 2023)

Table 3-1 Bore PF167MW1 Chemical Analyses Summary

Date		2.6.99	8.9.99	21.12.99	9.3.00	28.11.00	21.6.01	19.12.01	26.6.02	23.1.03	9.7.03	30.1.04	29.6.04	15.12.04	22.6.05	19.1.06	6.7.06
pH		4.43	4.49	4.21	4.93	4.28	4.61	4.98	4.52	4.54	5.15	4.31	4.38	4.68	5.42	4.32	4.27
Electrical Conductivity, EC	uS/cm	164	190	201	179	184	170	188	215	199	204	225	221	240	215	205	199
Total Dissolved Solids, TDS	mg/L	118	90	105	115	207	120	108	121	101	116	157	110	143	137	141	119
Calcium, Ca	mg/L	3	3	5	6	3	6	6	5	3	4	4	5	5	5	4	4
Magnesium, Mg	mg/i.	5	4	4	4	4	4	5	4	4	3	4	4	4	4	4	4
Sodium, Na	mg/L	16	18	16	15	18	16	18	25	20	19	22	23	26	28	25	23
Potassium, K	mg/L	2	2	3	3	3	5	4	5	2	2	2	3	3	3	3	3
Bicarbonate, HCO3	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	2	1	<1
Sulphate, SO4	mgIL	9	11	35	32	16	15	15	14	9	13	12	10	13	13	10	6
Chloride, Cl	mg/L	36	11	35	32	35	36	47	58	4	48	51	53	50	56.6	57.4	53.1
Oil and Grease	mg/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5

Table 3-1 (Con't) Bore PF167MW1 Chemical Analyses Summary

Date		5.7.07	3.7.08	3.7.09	16.6.10	22.6.11	20.6.12	19.6.13	8.8.14	30.6.15	10.8.16	17.7.17	14.8.18	2.9.19	5.8.20	17.8.21	15.9.22	16/08/23
pH		4.88	5.29	4	4.3	5.3	4.39	4.18	4.6	4.48	4.54	4.67	3.83	5.2	4.28	5.09	5.69	5.43
Electrical Conductivity, EC	uS/cm	188	161	177	190	170	174	211	205	150	188	151	210	262	160	153	73	169
Total Dissolved Solids, TDS	mg/L	76	100	104	111	101	112		94	70	111	99	113	137	112	104	48	127
Calcium, Ca	mg/L	2	6	5	3	4	7	<1	5	5	5	4	4	2	3	5	1	4
Magnesium, Mg	mg/i.	3	5	4	3	4	4	4	4	3	4	4	4	3	3	5	2	4
Sodium, Na	mg/L	16	13	14	15	18	12	22	19	12	17	14	21	16	16	14	7	14
Potassium, K	mg/L	2	4	4	2	4	4	2	3	2	3	3	4	22	3	4	3	4
Bicarbonate, HCO3	mg/L	<1	<1	<1	2	2.4	<1	<1	<1	<1	<1	<1	<1	4	<1	<1	4	4
Sulphate, SO4	mgIL	10	30	22.6	17.1	18	28	1	19	30	22	24	17	10	21	27	16	26
Chloride, Cl	mg/L	36.1	26.4	34.8	39.9	29	22	42	42	15	32	28	40	54	27	24	9	26
Oil and Grease	mg/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<8	<5	<5

Table 3-2 Bore PF166MW1 Chemical Analyses Summary

Date		1.6.99	8.9.99	21.12.99	9.3.00	29.11.00	21.6.01	19.12.01	26.6.02	23.1.03	9.7.03	30.1.04	29.6.04	15.12.04	22.6.05	19.1 .06	6.7.06
pH		4.18	4.19	4.13	4.14	4.31	4.19	4.63	4.48	4.82	7.86	4.39	4.27	4.06			l
Electrical Conductivity, EC	uS/cm	222	240	230	214	266	194	228	219	203	221	193	235	203	DRY	DRY	DRY
Total Dissolved Solids, TDS	mg/L	118	108	137	170	460	115	210	280	128	134	204	280	120			l
Calcium, Ca	mg/L	1	1	1	1	1	1	1	2	1	1	<1	1	1			l
Magnesium, Mg	mg/L	6	6	6	5	6	5	6	6	5	4	5	5	4			l
Sodium, Na	mg/L	26	23	23	22	29	21	22	24	19	20	18	19	19			l
Potassium, K	mg/L	<1	<1	1	1	1	1	2	1	<1	<1	<1	1	1			
Bicarbonate, HCO3	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1			l
Sulphate, SO4	mgIL	1	7	1	1	16	2	1	2	<1	<1	2	<1	2			l
Chloride, Cl	mg/L	58	49	51	52	58	49	58	61	46	50	47	44	36			
Oil and Grease	mg/L	<5	<5	<5	<5	<5	<5	<5	<5	6	<5	<5	5	<5			1

Table 3-2 (con't) Bore PF166MW1 Chemical Analyses Summary

Date		5.7.07	3.7.08	3.7.09	16.6.10	22.6.11	20.6.12	19.6.13	8.8.14	30.6.15	10.8.16	17.7.17	14.8.18	15.8.19	5.8.20	17.8.21	15.9.22	16/08/23
pH		4.76		3.58	4.06	4.22	4.08	4.53	4.19	4.03	4.18	4.11	dry	dry	4.99	4.21	4.44	4.6
Electrical Conductivity, EC	uS/cm	163	NA	240	247	261	229	189	219	239	208	176			195	154	222	146
Total Dissolved Solids, TDS	mg/L	98		140	141	172	124	186	89	100	234	122			247	105	117	119
Calcium, Ca	mg/L			<1	<1	1	1	6	1	<1	1	<1			<1	1	1	2
Magnesium, Mg	mg/L			4	4	6	5	4	5	6	5	5			5	5	7	5
Sodium, Na	mg/L			26	24	24	19	15	22	26	22	21			21	16	22	10
Potassium, K	mg/L			2	2	3	3	4	1	1	2	2			2	2	3	2
Bicarbonate, HCO3	mg/L			<1	<1	<1	<1	<1	<1	<1	<1	<1			2	<1	<1	2
Sulphate, SO4	mgIL			2.21	1.77	1	1	21	2	1	2	2			2	1	2	14
Chloride, Cl	mg/L			49.1	56.3	53	43	32	46	38	40	38			43	33	40	24
Oil and Grease	mg/L			<5	<5	<5	<5	<5	<5	<5	<5	<5			(13#) <5	<5	<5	<5

Groundwater and surface water samples collected by Earth2Water Pty Ltd (15 & 16 Aug 23)

^{(13#) &}amp; <5 = Initial (anomalous) and resampling results of Oil/Grease on 5 & 28 August 2020, respectively

Tables 3-3 to 3-4: Maroota Hitchcock Road- Water Analyses (2009 to 2023)

Table 3-3 Bore PFL2HitchMW1 Chemical Analyses Summary

Date		3.7.2009	16.6.2010	22.6.2011	20.6.2012	20.6.2012	19.6.2013	8.08.2014	30.06.2015	10.8.2016	17.7.2017	14.8.2018	15.8.2019	5.8.2020	17.8.2021	15.9.2022	16.8.2023
pH		3.96	4.1	4.1	4.03	4.03	4.18	3.99	3.94	4.19	4.02	3.96	7.11	5.16	3.91	4.09	4.28
Electrical Conductivity, EC	uS/cm	182	154	167	195	195	185	263	309	288	298	307	284	271	300	274	346
Total Dissolved Solids, TDS	mg/L	84	88	110	99	99	150	107	146	230	147	167	172	160	173	126	192
Calcium, Ca	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1
Magnesium, Mg	mg/L	2	2	2	2	2	2	3	3	3	4	4	4	4	4	3	4
Sodium, Na	mg/L	19	16	22	22	22	22	32	44	36	37	37	38	34	37	36	47
Potassium, K	mg/L	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate, HCO3	mgIL	<1	<	<1	<1	<1	<1	<1	<1	<1	<1	<1	9	2	<1	<1	<1
Sulphate, SO4	mg/L	7.88	4.06	5	1	1	4	6	6	6	5	6	6	5	5	5	4
Chloride, Cl	mg/L	40.3	36.9	32	43	43	43	62	59	63	70	76	67	64	82	75	103
Oil and Grease	mgJL	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

Table 3-4 Bore PFP214MW1 Chemical Analyses Summary

Date		3.7.2009	16.6.2010	22.6.2011	20.6.2012	19.6.2013	8.08.2014	30.06.2015	10.8.2016	17.7.2017	14.8.2018	15.8.2019	5.8.2020	17.8.2021	15.9.2022	16.8.2023
pH		4.19	4.16	4.31	4.27	5.7	4.22	4.07	4.05	4.34	3.65	4.84	4.36	4.14	4.32	4.36
Electrical Conductivity, EC	uS/cm	168	164	158	179	198	258	251	247	253	228	202	206	186	197	211
Total Dissolved Solids, TDS	mg/L	100	96	88	103	124	108	118	135	129	114	108	131	103	86	120
Calcium, Ca	mg/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Magnesium, Mg	mg/L	6	5	4	6	7	10	11	10	8	9	6	7	6	6	6
Sodium, Na	mg/L	18	15	18	17	21	23	21	17	14	16	17	18	20	20	20
Potassium. K	mg/L	1	<1	1	<1	2	<1	<1	1	1	2	<1	1	1	1	1
Bicarbonate, HCO3	mg/L	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate, SO4	mg/L	1.9	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	3
Chloride, Cl	mg/L	24.3	23.8	34	24	34	34	26	34	36	36	37	42	50	45	50
Oil and Grease	mg/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

Groundwater and surface water samples collected by Earth2Water Pty Ltd (15 & 16 Aug 23)

T3-3 &3-4 2023 1/1

Tables 3-5 to 3-6: Maroota Hitchcock Road- Water Analyses (1999 to 2023)

Table 3-5 Bore L198PB1 Chemical Analyses Summary (1999-2023)

Date		1.6.99	8.9.99	21.12.99	9.3.00	28.11.00	21.6.01	19.12.01	26.6.02	23.1.03	9.7.03	30.1.04	29.6.04	15.12.04	22.6.05	19.1.06	6.7.06	5.7.07	3.7.08	3.7.09	16.6.10	22.6.11	20.6.12	19.6.13	8.08.14	30.06.15	10.08.16	17.7.17	14.8.18	15.8.19	5.8.20	17.8.21	16.9.22	17.8.2023
pH		5.87	6.24	6.11	4.69	4.49	4.51	5.41	4.73	4.49	5.06	5	4.53	4.28	5.22	5.74	5.16	NA	4.59	3.94	4.43	5.52	5.72	NA	4.15	4.09	4.15	5.39	5.35	5.43	5.03	5.84	5.17	4.83
E Conductivity, EC	uS/cm	161	170	169	141	182	179	204	199	243	199	160	291	197	157	158	155		144	174	163	170	170		183	177	164	151	168	169	192	146	157	163
Total Dissolved Solids, TDS	mg/l	124	116	98	97	107	102	116	112	139	102	116	174	88	105	115	98		85	83	88	102	99		96	88	83	104	94	91	121	104	94	92
Calcium, Ca	mg/L	1	<1	1	1	3	2	2	4	3	2	2	4	1	1	2	1		<1	1	<1	2	2		1	1	1	2	2	1	2	2	2	1
Magnesium, Mg	mg/L	4	6	5	3	3	4	4	4	4	3	2	5	2	2	4	3		2	2	2	4	3		2	2	2	3	3	3	3	3	3	2
Sodium, Na	mg/L	21	24	22	19	20	21	27	23	31	22	19	40	25	23	21	20		18	19	16	21	18		20	20	18	18	19	20	23	21	20	20
Potassium, K	mg/L	1	<1	1	1	2	5	5	3	3	2	2	3	2	2	2	2		1	2	1	2	2		2	1	2	2	1	1	2	2	2	2
Bicarbonate, HCO3	mg/l	13	29	22	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	12	5		<1	<1	<1	3.7	9.8		<1	<1	<1	3	7	5	<1	3	1	<1
Sulphate, SO4	mg/L	4	4	4	2	8	8	3	7	4	8	6	9	8	8	6	2		10	9.31	6.89	6	6		9	7	8	6	9	8	8	7	9	8
Chloride, CI	mg/l	39	35	36	36	40	49	60	58	64	49	43	83	42	47.1	43.4	43.8		31.1	38.8	41.1	36	32		40	31	33	31	30	36	36	34	35	34
Oil and Grease	mg/l	<5	<5	<5	<5	<5	<5	<5	<5	6	<5	<5	<5	<5	<5	5	<5		<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	<5	<5	<8	<5	<5

Table 3-6A Bore L198PB2 Chemical Analyses Summary (1999-2023)

Date		1.6.99	8.9.99	21.12.99	9.3.00	29.11.00	21.6.01	19.12.01	26.6.02	23.1.03	9.7.03	30.1.04	29.6.04	15.12.04	22.6.05	19.1.06	6.7.06	5.7.07	3.7.08	3.7.09	16.6.10	22.6.11 20.6.1	2 19.6.13	8.08.14	30.6.15	10.8.16	17.7.17	14.8.18	15.8.19	5.8.20 17.8.21	16.9.22	17.8.2023
pH		5.78	6.61	5.96	NA	4.8	5.24	5.99	6.33	5.96	4.84	5	5.78	5.39	6.43	5.3	5.46	4.37	5.25	4.5	1	no sample	5.71	5.93	no s	ample	5.3	5.11	5.54	No sample	No s	ample
E Conductivity, EC	uS/cm	139	174	146	NA	152	130	141	151	146	162	160	136	156	133	126	122	195	135	130			146	150	(note 1)	(note 1)	156	147	152			ı
Total Dissolved Solids, TDS	mg/L	126	102	85	NA	100	87	87	102	84	87	116	79	105	87	104	79	88	79	79			91	69			81	90	82			ı
Calcium, Ca	mglL	1	2	2	NA	<1	<1	<1	1	<1	<1	2	1	1	<1	<1	1	<1	1	<1			<1	<1			<1	<1	<1			ı
Magnesium, Mg	mg/L	5	5	5	NA	4	3	4	4	4	2	2	4	2	4	3	4	3	5	3			3	4			3	3	3			ı
Sodium, Na	mg/L	18	19	18	NA	19	18	18	21	17	18	19	18	20	17	19	16	21	16	16			18	18			18	18	19			.
Potassium, K	mg/L	2	2	2	NA	1	1	2	2	1	<1	2	1	2	2	1	2	1	2	2			2	2			1	1	<1			ı
Bicarbonate, HCO3	mg/L	23	33	19	NA	4	3	13	8	16	<1	<1	9	2	14	7	24	<1	24.4	9.2			9	10			6	6	5			ı
Sulphate, 804	mg/L	3	3	2	NA	1	1	3	2	<1	<1	6	1	4	4	1	1	4	2	2.78			2	4			6	3	3			ı
Chloride, Cl	mg/l	31	28	31	NA	41	38	33	46	33	40	43	37	35	34.9	38.8	30.2	44.8	31.8	32.2			33	36			30	38	35			ı
Oil and Grease	mg/L	<5	<5	<5	-	NA	<5	<5	11	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5			<5	<5			<5	<5	<5			.

Note 1= Bore clogging (Iron floc) and chemicals added to unclogg (unrepresentative water)

Bore L198PB3 Chemical Analyses Summary (2020-2023) Table 3-6B

Date		5.8.20	17.8.21	16.9.22	17.8.23
pН		6.17	6.24	No sample	6.29
E Conductivity, EC	uS/cm	185	129		154
Total Dissolved Solids, TDS	mg/L	118	97		82
Calcium, Ca	mgIL	2	2		2
Magnesium, Mg	mg/L	5	5		5
Sodium, Na	mg/L	25	19		17
Potassium, K	mg/L	2	2		2
Bicarbonate, HCO3	mg/L	17	17		22
Sulphate, 804	mg/L	4	5		4
Chloride, Cl	mg/l	36	28		28
Oil and Grease	mg/L	<5	<5		<5

Note: New bore L198PB3 was installed in October 2019 to replace L198PB-2 (Fe clogging). PB3 Well capped off in 2022 due to high Fe in water PB1 & PB3: Groundwater samples collected by PF Formation (J.Graham) on 17 August 2023 under E2W supervision

Prepared by: Earth2Water Pty Ltd Checked By: DParisotto T3-5 & 3-6 PB1&3 2023 1/1

Table 3-7: Pumping Logbook POR 167 - Spring (2021-2022)

DATE START	TIME START	METER READING START	DATE FINISH	TIME FINISH	METER READING FINISH	M3 PUMPED	Approval No: 10WA114809 WAL number: 24156
2/09/21	14	0	44442	15	199	199	
5/10/21	14.45	199	44475	16.3	435	236	
20/10/21	16.2	435	44490	16.2	657	222	
27/10/21	16.3	657	44498	11.3	918	261	
3/11/21	16.3	918	44505	16.45	1417	499	
16/11/21	8.1	1417	44522	8	2256	839	Lost prime

Note: information provided by PFF in August 2022

TOTAL (m3)	2256
TOTAL (ML)	2.256

Con't Table 3-7: Pumping Logbook POR 167 - Spring (2022-2023)

DATE START	TIME START	METER READING START	DATE FINISH	TIME FINISH	METER READING FINISH	M3 PUMPED	Approval No: 10WA114809 WAL number: 24156
16/11/21	8.1	1417	44522	8	2256	839	Last Pumpage in 2021
Jan 2022 to Dec 2022	0				2256	0	No Pumpage- wet weather
Jan 2023 to June 2023	0				2256	0	No Pumpage- wet weather

TOTAL (m3)	0
TOTAL (ML)	0

Note: information provided by PFF in August 2023

Table 3-8: Pumping Records - Lot 198 PB01 (Jan 2022 to Dec 2022)

DATE	TIME START	METER READING START	METER READING FINISH	M3 PUMPED	Approval No. 10WA109355 WA number: 42252
1/07/21		45529	52542	7013	number: 42232
18/11/21 19/11/21		52542 52592	52592 52797	50 205	
23/11/21		52797	52849	52	
24/11/21 25/11/21		52849 52901	52901 52954	53	
26/11/21		52954 53117	53117 53168	163 51	
30/11/21		53168	53224	56	
1/12/21 2/12/21		53224 53280	53280 53340	56 60	
3/12/21		53340	53497 53551	157 54	
6/12/21 7/12/21		53497 53551	53604	53	
8/12/21 9/12/21		53604 53659	53659 53875	55 216	
13/12/21		53875	53933	58	
14/12/21 15/12/21		53933 53987	53987 54046	54 59	
16/12/21		54046 54096	54096	50	
17/12/21 20/12/21		54202	54202 54318	106 116	
22/12/21 23/12/21		54318 54370	54370 55341	52 971	
10/01/22		55341	55455	114	
12/01/22 13/01/22		55455 55505	55505 55650	50 145	
14/01/22		55650	55854	204	
19/01/22 1/02/22		55854 56537	56537 56588	683 51	
2/02/22 3/02/22	12.1	56588	56656	68 140	
4/02/22	6.55	56656 56796	56796 56856	60	
7/02/22 8/02/22	6 6.5	56856 56910	56910 57019	54 109	
10/02/22	8.22	57019	57058	39	
11/02/22 14/02/22	6.5 6.4	57058 57228	57228 57283	170 55	
15/02/22	7	57283 57246	57346	63 55	
16/02/22 18/02/22	7.3	57346 57401	57401 57744	343	
24/02/22 1/03/22	6.5 10.1	57744 58050	58050 58099	306 49	
2/03/22	7.05	58099	58701	602	
14/03/22 15/03/22	7	58701 58765	58765 58831	64	
16/03/22	7.15	58831 58902	58902	71 232	
17/03/22 21/03/22	7.45	59134	59134 59218	84	
22/03/22 23/03/22	7.3 6.55	59218 59283	59283 59347	65 64	
24/03/22	6.4	59347	60192	845	
6/04/22 7/04/22	7.2 6.31	60192 60255	60255 60318	63	
8/04/22	9	60318	60517	199	
11/01/22 12/04/22	6.55	60517 60584	60584 60650	67 66	
13/04/22 14/04/22	7 6.4	60650 60745	60745 60944	95 199	
19/04/22	6.27	60944	61112	168	
20/04/22 21/04/22	6.4	61112 61133	61133 61242	21 109	
22/04/22	6.26	61242	61507	265	
26/04/22 27/04/22	6.25	61507 61575	61575 61643	68 68	
28/04/22 29/04/22	6	61643 61708	61708	65	
3/05/22	7.05 7.2	61926	61926 62041	218 115	
4/05/22 5/06/22	11.3 6.5	62041 62095	62095 62158	54 63	
6/06/22	6.3	62158	62415	257	
10/05/22 11/05/22	6.4	62415 62480	62480 62545	65 65	
12/05/22	9.45	62545	62806	261	
16/05/22 17/05/22	7.37 6.57	62806 62870	62870 63073	64 203	
20/05/22	11.3	63073 63123	63123 63166	50	
24/05/22	6.55	63166	63402	236	
25/05/22 26/05/22	2.14 6.45	63402 63445	63445 63515	43 70	
27/05/22	8.3	63515	63575	60	
28/05/22 30/05/22	6.55	63575 63705	63705 63760	130 55	
31/05/22 1/06/22	6.35	63760 63803	63803 63868	43 65	
2/06/22	6.5	63868	63930	62	
3/06/22 6/06/22	6.3 6.55	63930 64123	64123 64193	193 70	
7/06/22	6.45	64193	64257	64	
8/06/22 10/06/22	6.35 6.45	64257 64385	64385 64645	128 260	
14/06/22	6.55	64645	64708 64774	63	
15/06/22 16/06/22	6.45 7	64708 64774	64774 64837	66	
17/06/22 20/06/22	6.46 6.55	64837 65025	65025 65086	188 61	
21/06/22	6.35	65086	65123	37	
22/06/22 27/06/22	6.43 7.4	65123 65422	65422 65442	299 20	
28/06/22	6.55	65442	65443	1	
29/06/22 30/06/22	6.3	65443 65506	65506 65730	63 224	
4/07/22	7.3	60730	65868	5138 199	
5/07/22 11/07/22	7.3 7	65868 66067	66067 66131	64	
12/07/22	6.41 8.22	66131 66204	66204 66262	73 58	
14/07/22	6.52	66262	66326	64	
15/07/22 18/07/22	6.51 7.12	66326 66526	66526 66551	200 25	
19/07/22	6.45	66551	66657	106	
20/07/22 21/07/22	6.4	66657 66726	66726 66794	69	
21/0//22			67009	215	i
22/07/22 25/07/22	6.46	66794 67009	67077	68	

Note: information provided by PFF in August 2022-2.

1 Jan 2022 - 31 Dec 2022 TOTAL (ML) 26.684

TOTAL (ML) 26.684

uly 2022	- June 202	3)			
DATE		METER READING START	METER READING FINISH	M3 PUMPED	Approval No. 10WA109355 WAL number: 42252
4/07/22 5/07/22	7.3 7.3	60730 65868	65868 66067	5138 199	
11/07/22	6.41	66067 66131	66131 66204	64 73	
13/07/22	8.22 6.52	66204 66262	66262 66326	58 64	
15/07/22 18/07/22 19/07/22	6.51 7.12 6.45	66326 66526 66551	66526 66551 66657	200 25 106	
20/07/22 21/07/22	6.4	66657	66726 66794	69	
22/07/22 25/07/22	6.5 6.46 7	66726 66794 67009	67009 67077	215	
26/07/22 27/07/22	6.42	67077	67145 67213	68	paried of no numpine
10/01/23 11/01/23	6.35 7.05 6.5	67145 0 5592	5592 5621	5592 29	period of no pumping New meter - other brok
12/01/23	6.3	5621 5651	5651 5741	30 90	
16/01/23 17/01/23	6.35 7.14	5741 5769	5769 5797	28 28	
18/01/23 19/01/23	6.42 6.3	5797 5825	5825 5851	28 26	
20/01/23 23/01/23	6.45 6.56	5851 5935	5935 5999	84 64	
25/01/23 1/02/23	10 6.5	5999 6249	6249 6297	250 48	
2/02/23 3/02/23	6.3 8.11	6297 6337	6337 6440	40 103	
6/02/23 8/02/23	6.45 7.55	6440 6504	6504 6534	64 30	
9/02/23 10/02/23	6.42 8	6534 6566	6566 6664	32 98	
13/02/23 14/02/23	6.45 6.45	6664 6697	6697 6728	33 31	
15/02/23 16/02/23	10.5 6.33	6728 6752	6752 6799	24 47	
17/02/23 21/02/23	6.24	6799 6897	6897 6930	98 33	
22/02/23 24/02/23	7.17 7.15	6930 7090	7090 7101	160 11	
27/02/23 28/02/23	7.05 7.15	7101 7135	7135 7170	34 35	
1/03/23 2/03/23	7 6.5	7170 7206	7206 7242	36 36	
3/03/23 6/03/23	6.55 6.4	7242 7349	7349 7385	107 36	
7/03/23 8/03/23	6.45 8.3	7385 7422	7422 7453	37 31	
9/03/23 10/03/23	6.55 7.01	7453 7485	7485 7585	32 100	
13/03/23 14/03/23	8.5 6.4	7585 7612	7612 7649	27 37	
15/03/23 16/03/23	9.45 6.45	7649 7676	7676 7710	27 34	
17/03/23 20/03/23	6.45	7710 7803	7803 7858	93 55	
22/03/23	6.5 7.2	7858 7890	7890 7925	32 35	
24/03/23 25/03/23	8.3 6.5	7925 7955 8049	7955 8049	30 94 32	
28/03/23 29/03/23 30/03/23	7.25 7.3	8081 8112	8081 8112 8142	31 30	
31/03/23	7 6.35	8142 8242	8242 8276	100 34	
4/04/23	9.4	8276 8490	8490 8528	214	
12/04/23	6.35	8528 8562	8562 8596	34 34	
14/04/23 17/04/23	6.4	8596 8708	8708 8745	112	
18/04/23 19/04/23	7.3 6.5	8745 8774	8774 8806	29 32	
20/04/23	6.5 10.55	8806 8841	8841 8871	35 30	
22/04/23 24/04/23	6.5 7.4	8871 8932	8932 9037	61 105	
27/04/23 28/04/23	6.5 6.5	9037 9071	9071 9173	34 102	
1/05/23 2/05/23	9.05 6.45	9173 9204	9204 9237	31 33	
3/05/23 5/05/23	6.45 6.3	9237 9304	9304 9406	67 102	
8/05/23 9/05/23	6.45 6.45	9406 9436	9436 9471	30 35	
10/05/23 11/05/23	6.5 9	9471 9508	9508 9536	37 28	
12/05/23 15/05/23	6.5 6.45	9536 9635	9635 9668	99 33	
16/05/23 17/05/23	6.45	9668 9701	9701 9734	33 33	
18/05/23 19/05/23	6.35 9.05	9734 9773	9773 9868	39 95	
22/05/23	6.55 8.45	9868 9902	9902 9965	34 63	
25/05/23 26/05/23	6.45	9965 9998	9998 10024	33 26	
29/05/23 30/05/23	6.41	10024 10127	10127 10158	103 31	
31/05/23 1/06/23	6.4 8.45	10158 10189	10189 10220	31 31	
2/06/23 5/06/23	7 6.55 8.55	10220 10313 10345	10313 10345 10372	93 32 27	
6/06/23 7/06/23	8.55 6.5	10345 10372	10372 10404	27 32 20	
8/06/23 9/06/23 13/06/23	6.5 6.5	10404 10434	10434 10563 10592	30 129 29	
14/06/23	6.5	10563 10592 10625	10625	33	
15/06/23 16/06/23	6.5 6.5	10625 10688 10754	10688 10754 10786	63 66 32	
19/06/23	6.45 6.3	10754 10786	10786 10815	32 29 34	
21/06/23 22/06/23	6.35 9	10815 10849	10849 10876	27	
23/06/23 26/06/23 27/06/23	6.5 6.4	10876 10967 10997	10967 10997 11026	91 30 29	
27/06/23 28/06/23 29/06/23	8.35 6.4 6.4	11026 11056	11026 11056 11088	30 32	
30/06/23	9	11088	11173	117	
	on provided by sioned (high Fe	PFF in August 2023		İ	

Table 3-9A: Maroota Hitchcock Road- Water Analyses for New Wells (2017 to 2023)

		MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-3D	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-5D
New Wells & Dams Date		17/07/17	18/05/17	14/08/18	15/08/19	5/08/20	17/08/21	1 15/09/22	15/08/23	18/05/17	14/08/18	2/09/19	5/08/20	17/08/21	15/09/22	15/08/23	18/05/17	1/08/18	15/08/19	5/08/20	17/08/21	15/09/22	15/08/23	18/05/17	14/08/18	15/08/19	5/08/20	17/08/21	15/09/22	15/08/23	18/05/17	14/08/18	15/08/19	5/08/20	17/08/21	15/09/22	15/08/23	18/05/17
pH	units	4.58	5.39	5.5	6.15	4.77	5.03	4.57	4.45	6.99	5.5	5.44	5.18	5.73	5.22	5.21	5.63	4.02	4.98	4.75	4.27	4.46	4.33	6.03	4.48	insufficient	5.65	5.56	5.3	5.25	5.85	5.47	5.65	5.73	6.11	5.41	6.32	5.82
Electrical Conductivity	uS/cm	166	211	128	168	67	129	221	242	307	128	152	137	120	172	140	278	306	250	164	143	87	118	129	76	water	76	74	126	157	274	158	149	152	136	125	162	190
Total Dissolved Solids	mg/L	114	384	84		66	102	124	137	549	84	77	96	78	79	93	346	159	130	103	90	61	72	169			60	48	64	120	736	95	92	110	112	73	120	1140
Calcium, Ca	mg/L	3	5	2	3	1	2	4	4	9	2	3	2	2	3	2	2	1	1	<1	<1	<1	<1	7	1		<1	2	3	4	3	2	2	3	4	3	5	<1
Magnesium, Mg	mg/L	4	3	2	3	1	3	5	6	3	2	2	2	2	4	3	1	7	4	2	2	1	2	3	1		2	3	4	5	1	2	2	3	2	5	2	<1
Sodium, Na	mg/L	18	20	15	18	8	17	26	20	40	15	18	18	19	20	19	32	36	31	21	21	10	12	8	11		8	8	13	15	37	22	21	21	21	11	22	13
Potassium, K	mg/L	2	2	1	2	<1	2	2	2	3	1	1	1	1	2	2	11	<1	<1	<1	<1	<1	<1	3	1		1	<1	<1	1	8	<1	<1	<1	1	<1	<1	26
Bicarbonate, HCO3	mgIL	<1	2	8	4	<1	<1	<1	<1	35	8	8	3	5	3	4	2	<1	<1	<1	<1	<1	<1	12	<1		8	<1	6	5	8	13	7	11	7	3	15	3
Sulphate, SO4	mg/L	6	8	3	3	2	5	6	5	12	3	1	1	2	4	2	3	2	2	2	2	3	2	20	4		7	12	16	20	32	7	3	2	7	19	4	<1
Chloride, Cl	mg/L	38	37	30	36	15	31	58	63	40	30	32	31	28	41	32	56	68	57	36	33	18	24	12	17		12	11	22	25	34	18	9	19	18	16	19	36
Oil& Grease	mg/L	<5			<5	<5	<5	<5	<5			<5	<5	<5	<5	<5		<5	<5	<5	<8	<5	<5		<5		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5	

Note: Analyses by ALS
Re-analyses conducted on TDS-filtering of samples conducted due to TDS values exceeding EC (turbidity & silica issues)
bold-TDS results are considered anomalous (re-analyses conducted after filtering samples, i.e. TDS higher than EC, possibly silica in water)
— (no TDS available- matrix interference)
MW-2D sample on 15 Aug 2019 was turbid and not representative. MW-2D resampled on 2 Sept 2019 by Melissa Mass

Prepared By:Earth2Water Pty Ltd CHecked By: DParisotto page 1 of 1 T3-1-6 lab water graphs Hichck DP 24-8-2023

Table 3-9B: Maroota Hitchcock Road- Water Analyses for Dams (2018 to 2023)

Eviating Site Dama		CWD	CWD	CWD	CWD	CWD	CWD	Por167 Dam	Por167 Dam	Por167 Dam	Por167 Dam	Por167 Dam	Por167 Dam
Existing Site Dams Date		14/08/18	2/09/19	5/08/20	17/08/21	16/09/22	16/08/23	14/08/18	2/09/19	5/08/20	17/08/21	16/09/22	16/08/23
pH	units	4.62	5.26	5.43	4.72	5.09	4.97	4.15	5.52	5.38	5.02	6.31	5.97
Electrical Conductivity	uS/cm	222	86	113	161	159	122	201	222	176	94	103	129
Total Dissolved Solids	mg/L	125		76	113	90	85	108		119	74	68	94
Calcium, Ca	mg/L	5	1	3	8	7	1	2	6	2	4	8	6
Magnesium, Mg	mg/L	3	2	2	2	2	2	3	3	4	2	1	2
Sodium, Na	mg/L	25	9	13	18	16	13	22	24	22	11	9	12
Potassium, K	mg/L	3	2	3	3	4	4	2	5	3	2	2	3
Bicarbonate, HCO3	mgIL	<1	<1	<1	<1	<1	1	<1	4	<1	<1	8	4
Sulphate, SO4	mg/L	5	4	8	20	30	7	7	20	8	13	16	15
Chloride, Cl	mg/L	45	20	21	31	24	25	38	44	36	21	14	22
Oil & Grease	mg/L	<5	< 5	(10 #) <5	<5	<5	<5	<5	<5	<5	<5	<5	<5

Note:

Groundwater and surface water samples collected by Earth2Water Pty Ltd (15 & 16 Aug 23)

CWD= Clean Water Dam on Por 167 site

(10#) & <5 = Initial (anomalous) and resampling results of Oil/Grease on 5 & 19 August 2020, respectively

Por167Dam= Por167Spring

Table 3-10: Maroota - Water Analyses for Existing Wells at 4378 ON Rd (2019 -2023)

Site; 4378 Old Northern Rd, Maroota

Maroota New Wells	units	4378ONR PF1	4378ONR PF1	4378ONR PF1	4378ONR PF1	4378ONR PF2	4378ONR PF2	4378ONR PF2	4378ONR PF2	4378ONR PF3	4378ONR PF3	4378ONR PF3	4378ONR PF3	4378ONR PF3
Date		15/8/2019	5/08/2020	17/08/2021	16/09/2022	15/8/2019	5/08/2020	17/08/2021	16/09/2022	15/8/2019	5/08/2020	17/08/2021	16/09/2022	16/08/2023
рН		5.76	4.79	4.8	3.87	5.84	4.9	7.36	7.47	dry	4.29	4.08	4.47	4.07
Electrical Conductivity, EC	uS/cm	156	64	149	130	72	55	206	198		221	632	226	286
Total Dissolved Solids (ALS)	mg/L	79	28	96	99	38	57	116	50		191	347	107	168
Calcium, Ca	mg/L	<1	1	1	2	1	<1	<1	<1		2	4	1	2
Magnesium, Mg	mg/L	2	<1	2	2	<1	<1	<1	<1		4	11	3	4
Sodium, Na	mg/L	16	5	23	9	8	8	9	8		26	83	29	31
Potassium, K	mg/L	2	1	2	<1	<1	<1	3	3		<1	<1	1	<1
Bicarbonate, HCO3	mgIL	12	<1	<1	<1	11	<1	79	68		<1	<1	<1	<1
Sulphate, SO4	mg/L	2	<1	3	14	3	3	7	5		9	8	4	9
Chloride, Cl	mg/L	32	11	39	21	9	9	11	14		51	178	64	58
Oil& Grease	mg/L	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5

Note:

Groundwater samples collected by Earth2Water Pty Ltd on 16 August 2023 Samples analysed by ALS Environmental (NATA accredited)
Wells PF-1 & PF-2; not accessible (earthworks) on 16 Aug 2023

Table 3-11: Pumping Log book Lot 198 - Bywash Dam (2021-2022)

DATE	TIME START	METER READING START	TIME FINISH	METER READING FINISH	M3 PUMPED	Approval No: 10WA105415 WAL number : 26168
1/07/21		12732	13/07/21 8.40	12875	143	
13/07/21	8.4	12875	17	12930	55	
20/07/21	8	12930	21/07/21 8.30	13090	160	
27/07/21	7.3	13090	18.15	13160	70	
5/08/21	8	13160	16.45	13189	29	
23/08/21	7.3	13189	24/08/21 08.15	13351	162	
27/09/21	12.55	13351	28/09/21 6.30	13468	117	
12/10/21	6.3	13468	12/10/21 16.30	13534	66	
22/10/21	7.15	13534	4.25	13544	10	
28/10/21	7	13544	16.3	13805	261	
17/11/21	7	13805	18/11/21 16.30	13865	60	
20/11/21	7	13865	16.15	13897	32	
25/11/21	16.3	13897	26/11/21 07.30	13993	96	
5/01/22	11	13993		14006	13	
6/01/22	10	14006		14078	72	

Note: information provided by PFF in August 2022

TOTAL (m3) 1346 TOTAL (ML) 1.346

Table 3-11: Pumping Log book Lot 198 - Bywash Dam (2022-2023)

DATE	TIME START	METER READING START	TIME FINISH	METER READING FINISH	M3 PUMPED	Approval No: 10WA105415 WAL number : 26168
6/01/22	10	14006		14078	72	
Jan 2022 to Dec 2022	0				2256	No Pumpage- wet weather
Jan 2023 to June 2023	0				2256	No Pumpage- wet weather

TOTAL (m3)	0
TOTAL (ML)	0

Prepared by : Earth2Water Pty Ltd Checked By: DP

Table 3-12A: Pumping Records for POR 167 Clean Water Dam (July 2022 to June 2023)

	,				
	METER READING	METER READING	HOURS		Approval No:
DATE	START	FINISH	PUMPED	M3 PUMPED	10WA114809
4/11/22			(METER)	11404	WAL: 24156
4/11/22 7/11/22	12840 12852	12852 12864	12	11484 11484	July-Nov22
8/11/22	12864	12874	10	9570	Pump under
9/11/22	12874	12884	10	9570	water & stopped
10/11/22 11/11/22	12884 12894	12894 12904	10	9570 9570	
14/11/22	12904	12920	16	15312	
15/11/22	12920	12938	18	17226	
16/11/22	12938 12955	12955	17	16269	
17/11/22 18/11/22	12955	12966 12981	11	10527 14355	
19/11/22	12981	12985	4	3828	
21/11/22	12985	12998	13	12441	
22/11/22 23/11/22	12998 13013	13013 13018	15 5	14355 4785	
24/11/22	13018	13030	12	11484	
25/11/22	13030	13043	13	12441	
28/11/22	13043	13057	14	13398	
29/11/22 30/11/22	13057 13069	13069 13084	12	11484 14355	
1/12/22	13084	13097	13	12441	
5/12/23	13097	13113	16	15312	
6/12/23 7/12/23	13113 13129	13129 13147	16 18	15312 17226	
8/12/23	13129	13164	17	16269	
9/12/23	13164	13180	16	15312	
12/12/22	13180	13190	10	9570	
13/12/22	13190 13207	13207 13220	17	16269 12441	
15/12/22	13220	13232	12	11484	
16/12/22	13232	13243	11	10527	
19/12/22 20/12/22	13243 13256	13256 13259	13	12441 2871	
21/12/22	13259	13274	15	14355	
22/12/22	13274	13291	17	16269	
10/01/23	13291	13305	14	13398	
11/01/23 12/01/23	13305 13317	13317 13329	12 12	11484 11484	
13/01/23	13329	13341	12	11484	
16/01/23	13341	13356	15	14355	
17/01/23 18/01/23	13356 13375	13375 13391	19 16	18183 15312	
19/01/23	13391	13406	15	14355	
20/01/23	13406	13419	13	12441	
23/01/23	13419	13433	14	13398	
24/01/23 25/01/23	13433 13445	13445 13465	12 20	11484 19140	
27/01/23	13465	13476	11	10527	
30/01/23	13476	13480	4	3828	
31/01/23 1/02/23	13480 13488	13488 13501	8	7656 12441	
2/02/23	13501	13513	12	11484	
3/02/23	13513	13525	12	11484	
6/02/23	13525	13535	10	9570	
7/02/23 8/02/23	13535 13550	13550 13564	15 14	14355 13398	
10/02/23	13564	13577	13	12441	
13/02/23	13577	13715	138	132066	
2/03/23 3/03/23	13715 13729	13729 13741	14 12	13398 11484	
6/03/23	13741	13755	14	13398	
7/03/23	13755	13764	9	8613	
8/03/23	13764	13777	13	12441	-
9/03/23	13777 13790	13790 13804	13	12441 13398	1
13/03/23	13804	13816	12	11484	
14/03/23	13816	13831	15	14355	
15/03/23 16/03/23	13831 13842	13842 13842	11	10527 0	
17/03/23	13842	13842	0	0	
20/03/23	13842	13854	12	11484	
21/03/23	13854	13868	14	13398	
22/03/23 23/03/23	13868 13868	13868 13879	0	0 10527	
24/03/23	13879	13889	10	9570	
25/03/23	13889	13900	11	10527	

Table 3-12A: Pumping Records for POR 167 Clean Water Dam (July 2022 to June 2023)

DATE	METER READING	METER READING	HOURS PUMPED	M3 PUMPED	Approval No: 10WA114809
DATE	START	FINISH	(METER)	MO I CMI LD	WAL: 24156
27/03/23	13900	13913	13	12441	VV1123 2 1100
28/03/23	13913	13942	29	27753	
30/03/23	13942	13942	0	12200	
31/03/23 3/04/23	13942 13956	13956 13956	14	13398	
4/04/23	13956	13968	12	11484	
5/04/23	13968	13994	26	24882	
11/04/23	13994	14008	14	13398	
12/04/23	14008	14023	15	14355	
13/04/23 14/04/23	14023 14047	14047 14057	24 10	22968 9570	
17/04/23	14057	14068	10	10527	
18/04/23	14068	14078	10	9570	
19/04/23	14078	14090	12	11484	
20/04/23	14090	14100	10	9570	
21/04/23	14100	14107 14114	7	6699	
22/04/23 24/04/23	14107 14114	14114	15	6699 14355	
27/04/23	14129	14144	15	14355	
28/04/23	14144	14157	13	12441	
1/05/23	14157	14171	14	13398	
2/05/23 5/05/23	14171 14225	14225 14237	54 12	51678 11484	
8/05/23	14223	14247	10	9570	
9/05/23	14247	14258	11	10527	
10/05/23	14258	14268	10	9570	
11/05/23	14268	14277	9	8613	
12/05/23	14277	14290	13	12441	
15/05/23 16/05/23	14290 14303	14303 14314	13	12441 10527	
17/05/23	14314	14327	13	12441	
18/05/23	14327	14338	11	10527	
19/05/23	14338	14347	9	8613	
22/05/23 23/05/23	14347 14359	14359 14385	12 26	11484 24882	
25/05/23	14339	14396	11	10527	
26/05/23	14396	14408	12	11484	
29/06/23	14408	14422	14	13398	
30/05/23	14422	14434	12	11484	
31/05/23	14434	14445 14455	11	10527 9570	
1/06/23 2/06/23	14445 14455	14467	12	9370 11484	
5/06/23	14467	14481	14	13398	
6/06/23	14481	14493	12	11484	
7/06/23	14493	14505	12	11484	
8/06/23	14505	14512 14530	10	6699	
9/06/23 13/06/23	14512 14530	14530	18 13	17226 12441	
14/06/23	14543	14556	13	12441	
15/06/23	14556	14556	0	0	
16/06/23	14556	14569	13	12441	
19/06/23	14569	14584	15	14355	
20/06/23 21/06/23	14584 14597	14597 14610	13 13	12441 12441	
22/06/23	14610	14619	9	8613	
23/06/23	14619	14631	12	11484	
24/06/23	14631	14637	6	5742	
26/06/23	14637	14653	16	15312	
27/06/23 28/06/23	14653 14669	14669 14682	16 13	15312 12441	
29/06/23	14682	14695	13	12441	
30/06/23	14695	14707	12	11484	
	n provided by PFF in Aug			-	
		1 July 2022- 30 June 2023	TOTAL (m3)	1786719	
	1	,	\		-

111 2022	to Dec 2022)		HOURS		Approval No
DATE	METER READING START	METER READING FINISH	PUMPED (METER)	M3 PUMPED	10WA114809 WAL: 24156
10/01/22	10913 10923	10923 10933	10 10	9570 9570	
12/01/22 13/01/22	10933 10941	10941 10951	8 10	7656 9570	
14/01/22 17/01/22	10951 10960	10960 10969	9	8613 8613	
18/01/22 19/01/22	10969 10978	10978 10987	9	8613 8613	
20/01/22 25/01/22	10987 11046	11046 11053	59 7	56463 6699	
28/01/22 1/02/22	11053 11062	11062 11079	9 17	8613 16269	
2/02/22 3/02/22	11002 11079 11082	11082	3 7	2871	
4/02/22	11089	11089 11098	9	6699 8613	
7/02/22 8/02/22	11098 11108	11108 11117	10 9	9570 8613	
10/02/22 11/02/22	11117 11126	11126 11134	9 8	8613 7656	
14/02/22 15/02/22	11134 11144	11144 11153	10 9	9570 8613	
16/02/22 18/02/22	11153 11163	11163 11171	10 8	9570 7656	
21/02/22	11171 11180	11180 11184	9	8613 3828	
1/03/22	11184	11200	16	15312	
14/03/22 16/03/22	11200 11217	11217 11248	17 31	16269 29667	
23/03/22	11248 11257	11257 11320	63	8613 60291	
19/04/22 20/04/22	11320 11328	11328 11337	8	7656 8613	
21/04/22 22/04/22	11337 11347	11347 11357	10 10	9570 9570	
26/04/22 27/04/22	11357 11366	11366 11375	9	8613 8613	
28/04/22 29/04/22	11375 11384	11384 11425	9 41	8613 39237	
6/05/22 20/05/22	11425 11491	11491 11499	66	63162 7656	
21/05/22	11499	11510	11 14	10527	
23/05/22	11510 11524	11524 11534	10	13398 9570	
25/05/22 26/05/22	11534 11542	11542 11559	8 17	7656 16269	
27/05/22 28/05/22	11559 11574	11574 11579	15 5	14355 4785	
30/05/22 31/05/22	11579 11599	11599 11604	20 5	19140 4785	
1/06/22 2/06/22	11604 11616	11616 11628	12 12	11484 11484	
3/06/22 6/06/22	11628 11640	11640 11652	12 12	11484 11484	
7/06/22 8/06/22	11652 11665	11665 11688	13 23	12441 22011	
10/06/22	11688 11701	11701 11714	13 13	12441 12441	
15/06/22	11701 11714 11725	11725	11 11	10527	
16/06/22 17/06/22	11736	11736 11748	12	10527 11484	
20/06/22 21/06/22	11748 11761	11761 11774	13 13	12441 12441	
22/06/22 27/06/22	11774 11786	11798 11811	24 25	22968 23925	
28/06/22 29/06/22	11798 11811	11824 11824	26 13	24882 12441	
30/06/22 4/11/22	11824 12840	11840 12852	16 12	15312 11484	Pump under water & stopp
7/11/22 8/11/22	12852 12864	12864 12874	12 10	11484 9570	
9/11/22 10/11/22	12874 12884	12884 12894	10	9570 9570	
1/11/22	12894 12904	12904 12920	10 10 16	9570 9570 15312	
15/11/22	12904 12920 12938	12920 12938 12955	18	17226	
17/11/22	12955	12966	17 11	16269 10527	
18/11/22	12966 12981	12981 12985	15 4	14355 3828	
21/11/22 22/11/22	12985 12998	12998 13013	13 15	12441 14355	
23/11/22 24/11/22	13013 13018	13018 13030	5 12	4785 11484	
25/11/22 28/11/22	13030 13043	13043 13057	13 14	12441 13398	
29/11/22 30/11/22	13057 13069	13069 13084	12	11484 14355	
1/12/22 5/12/23	13084 13097	13097 13113	13 16	12441 15312	
6/12/23 7/12/23	13113 13129	13113 13129 13147	16 18	15312 15312 17226	
8/12/23 9/12/23	13129 13147 13164	13147 13164 13180	18 17 16	16269 15312	
2/12/22	13180	13190	10	9570	
13/12/22	13190 13207	13207 13220	17 13	16269 12441	
15/12/22 16/12/22	13220 13232	13232 13243	12 11	11484 10527	
19/12/22 20/12/22	13243 13256	13256 13259	13	12441 2871	
21/12/22	13259 13274	13274 13291	15 17	14355 16269	
10/01/23	132/4 13291 13305	13305 13317	14	13398 11484	
12/01/23	13303 13317 13329	13317 13329 13341	12 12 12	11484 11484 11484	
16/01/23	13341	13356	15	14355	
17/01/23 18/01/23	13356 13375	13375 13391	19 16	18183 15312	+

DATE	METER READING START	METER READING FINISH	HOURS PUMPED (METER)	M3 PUMPED	Approval No 10WA114809 WAL: 24150
20/01/23	13406	13419	13	12441	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
23/01/23 24/01/23	13419 13433	13433 13445	14 12	13398 11484	
25/01/23	13445	13465	20	19140	
27/01/23	13465	13476	11	10527	
30/01/23 31/01/23	13476 13480	13480 13488	4 8	3828 7656	
1/02/23	13488	13501	13	12441	
2/02/23	13501	13513	12	11484	
3/02/23 6/02/23	13513	13525 13535	12 10	11484 9570	
7/02/23	13525 13535	13550	15	14355	
8/02/23	13550	13564	14	13398	
10/02/23 13/02/23	13564 13577	13577 13715	13 138	12441 132066	
2/03/23	13715	13729	14	13398	
3/03/23	13729	13741	12	11484	
6/03/23 7/03/23	13741 13755	13755 13764	14 9	13398 8613	
8/03/23	13764	13777	13	12441	
9/03/23	13777	13790	13	12441	
10/03/23 13/03/23	13790 13804	13804 13816	14 12	13398 11484	
14/03/23	13816	13831	15	14355	<u> </u>
15/03/23	13831	13842	11	10527	
16/03/23 17/03/23	13842 13842	13842 13842	0	0	1
20/03/23	13842	13854	12	11484	<u> </u>
21/03/23	13854	13868	14	13398	
22/03/23 23/03/23	13868 13868	13868 13879	0 11	0 10527	1
24/03/23	13879	13889	10	9570	<u> </u>
25/03/23	13889	13900	11	10527	1
27/03/23 28/03/23	13900 13913	13913 13942	13 29	12441 27753	1
30/03/23	13942	13942	0	0	
31/03/23	13942	13956	14	13398	
3/04/23 4/04/23	13956 13956	13956 13968	12	11484	
5/04/23	13968	13994	26	24882	
11/04/23 12/04/23	13994	14008 14023	14 15	13398	
13/04/23	14008 14023	14023	24	14355 22968	
14/04/23	14047	14057	10	9570	
17/04/23 18/04/23	14057 14068	14068 14078	11 10	10527 9570	
19/04/23	14068	14078	12	11484	
20/04/23	14090	14100	10	9570	
21/04/23 22/04/23	14100 14107	14107 14114	7 7	6699 6699	
24/04/23	14114	14129	15	14355	
27/04/23	14129	14144	15	14355	
28/04/23 1/05/23	14144 14157	14157 14171	13 14	12441 13398	
2/05/23	14171	14225	54	51678	
5/05/23	14225	14237	12	11484	
8/05/23 9/05/23	14237 14247	14247 14258	10	9570 10527	
10/05/23	14258	14268	10	9570	
11/05/23	14268	14277	9	8613	
12/05/23 15/05/23	14277 14290	14290 14303	13 13	12441 12441	1
16/05/23	14303	14314	11	10527	
17/05/23	14314	14327	13	12441	ļ
18/05/23 19/05/23	14327 14338	14338 14347	11	10527 8613	†
22/05/23	14347	14359	12	11484	
23/05/23 25/05/23	14359 14385	14385 14396	26 11	24882 10527	1
26/05/23	14383	14396	12	11484	<u> </u>
29/06/23	14408	14422	14	13398	
30/05/23 31/05/23	14422 14434	14434 14445	12	11484 10527	1
1/06/23	14445	14455	10	9570	<u> </u>
2/06/23	14455	14467	12	11484	
5/06/23 6/06/23	14467 14481	14481 14493	14 12	13398 11484	
7/06/23	14493	14505	12	11484	<u> </u>
8/06/23	14505	14512	7	6699	1
9/06/23 13/06/23	14512 14530	14530 14543	18 13	17226 12441	1
14/06/23	14543	14556	13	12441	<u> </u>
15/06/23	14556	14556	0	0	1
16/06/23 19/06/23	14556 14569	14569 14584	13 15	12441 14355	1
20/06/23	14584	14597	13	12441	
21/06/23	14597	14610	13	12441	1
22/06/23 23/06/23	14610 14619	14619 14631	9 12	8613 11484	1
24/06/23	14631	14637	6	5742	
26/06/23	14637	14653	16	15312	ļ
27/06/23 28/06/23	14653 14669	14669 14682	16 13	15312 12441	
29/06/23	14682	14695	13	12441	
30/06/23	14695	14707	12	11484	
:: informatio	n provided by PFF in Augu		—		
		1 Jan 2022- 31 Dec 2022	TOTAL (m3)	2710224	

Table 3-12B: Pumping Records; Lot 198 Clean Water Dam (Jan 2022 to Dec 2022)

DATE START	METER READING START	METER READING FINISH	HOURS PUMPED (METER)	M3 PUMPEI			
8/02/22	7908	7916	(METEK)	7656			
10/02/22	7916	7925	9	8613			
11/02/22	7925	7932	7	6699			
14/02/22	7932	7941	9	8613			
15/02/22	7941	7950	9	8613			
16/02/22	7950	7955	5	4785			
18/02/22	7955	7960	5	4785			
21/02/22	7960	7971	11	10527			
22/02/22	7971	7977	6	5742			
24/02/22	7977	7978	1	957			
1/03/22	7978	7984	6	5742			
2/03/22	7984	7993	9	8613			
14/03/22	7993	7997	4	3828			
15/03/22	7997	8002	5	4785			
16/03/22	8002	8009	7	6699			
17/03/22	8009	8012	3	2871			
21/03/22	8012	8021	9	8613			
22/03/22	8021	8029	8	7656			
23/03/22	8029	8039	10	9570			
24/03/22	8039	8043	4	3828			
6/04/22	8043	8046	3	2871			
7/04/22	8046	8050	4	3828			
8/04/22	8050	8056	6	5742			
11/04/22	8056	8066	10	9570			
12/04/22	8066	8075	9	8613			
13/04/22	8075	8084	9	8613			
14/04/22	8084	8092	8	7656			
19/04/22	8092	8095	3	2871			
20/04/22	8095	8105	10	9570			
21/04/22	8105	8114	9	8613			
22/04/22	8114	8117	3	2871			
26/04/22	8117	8127	10	9570			
27/04/22	8127	8136	9	8613			
28/04/22	8136	8146	10	9570			
29/04/22	8146	8160	14	13398			
3/05/22	8160	8170	10	9570			
5/05/22	8170	8174	4	3828 9570			
5/05/22	8174 8184	8184	10 13	12441			
6/05/22 10/05/22	8197	8197 8207	10				
11/05/22	8207	8207 8216	9	9570 8613			
12/05/22	8216	8225	9	8613			
16/05/22	8225	8233	8	7656			
17/05/22	8233	8242	9	8613			
20/05/22	8242	8249	7	6699			
21/05/22	8249	8269	20	19140			
24/05/22	8269	8277	8	7656			
25/05/22	8277	8283	6	5742			
26/05/22	8283	8292	9	8613			
27/05/22	8292	8300	8	7656			
28/05/22	8300	8304	<u> </u>	3828			
30/05/22	8304	8314	10	9570			
31/05/22	8314	8316	2	1914			
1/06/22	8316	8326	10	9570			
2/06/22	8326	8335	9	8613			
3/06/22	8335	8344	9	8613			
6/06/22	8344	8353	9	8613			
7/06/22	8353	8362	9	8613			
8/06/22	8362	8375	13	12441			
10/06/22	8375	8385	10	9570			
14/06/22	8385	8394	9	8613			
15/06/22	8394	8403	9	8613			
16/06/22	8403	8412	9	8613			
17/06/22	8412	8423	11	10527			
20/06/22	8423	8432	9	8613			
21/06/22	8432	8442	10	9570			
22/06/22	8442	8451	9	8613			
27/06/22		8459	8	7656			
27/06/22 8451 28/06/22 8459		8469	10	9570			
28/06/22			9	8613			
28/06/22 29/06/22	8469	8478		9570			
28/06/22 29/06/22 30/06/22	8478	8488	10	9570			
28/06/22 29/06/22 30/06/22 1/07/22	8478 8478	8488 8488	10 10	9570 9570			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22	8478 8478 8488	8488 8488 8489	10 10 1	9570 9570 957			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22	8478 8478 8488 8489	8488 8488 8489 8497	10 10 1 8	9570 9570 957 7656			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22	8478 8478 8488 8489 8497	8488 8488 8489 8497 8500	10 10 1 8 3	9570 9570 957 7656 2871			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22	8478 8478 8488 8489 8497 8500	8488 8488 8489 8497 8500 8515	10 10 1 8 3 15	9570 9570 957 7656 2871 14355			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22	8478 8478 8488 8489 8497 8500 8515	8488 8488 8489 8497 8500 8515 8525	10 10 1 8 3 15	9570 9570 957 7656 2871 14355 9570			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22 13/07/22	8478 8478 8488 8489 8497 8500 8515 8525	8488 8488 8489 8497 8500 8515 8525 8533	10 10 1 8 3 15 10 8	9570 9570 957 7656 2871 14355 9570 7656			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22 13/07/22 14/07/22	8478 8478 8488 8489 8497 8500 8515 8525 8533	8488 8488 8489 8497 8500 8515 8525 8533 8543	10 10 1 8 3 15 10 8	9570 9570 957 7656 2871 14355 9570 7656 9570			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22 13/07/22 14/07/22 15/07/22	8478 8478 8488 8489 8497 8500 8515 8525 8533 8543	8488 8488 8489 8497 8500 8515 8525 8533 8543 8552	10 10 1 8 3 15 10 8 10	9570 9570 957 7656 2871 14355 9570 7656 9570 8613			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22 13/07/22 15/07/22 18/07/22 18/07/22	8478 8478 8488 8489 8497 8500 8515 8525 8533 8543 8552	8488 8488 8489 8497 8500 8515 8525 8533 8543 8552 8561	10 10 1 8 3 15 10 8 10 9	9570 9570 957 7656 2871 14355 9570 7656 9570 8613			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22 13/07/22 15/07/22 18/07/22 19/07/22	8478 8478 8488 8489 8497 8500 8515 8525 8533 8543 8552 8561	8488 8488 8489 8497 8500 8515 8525 8533 8543 8552 8561	10 10 1 8 3 15 10 8 10 9 9	9570 9570 9577 7656 2871 14355 9570 7656 9570 8613 8613			
28/06/22 29/06/22 30/06/22 1/07/22 4/07/22 8/07/22 9/07/22 11/07/22 12/07/22 13/07/22 15/07/22 18/07/22	8478 8478 8488 8489 8497 8500 8515 8525 8533 8543 8552	8488 8488 8489 8497 8500 8515 8525 8533 8543 8552 8561	10 10 1 8 3 15 10 8 10 9	9570 9570 957 7656 2871 14355 9570 7656 9570 8613			

25/07/22	8599	8608	9	8613
26/07/22	8608	8618	10	9570
27/07/22	8618	8628	10	9570
28/07/22	8628	8637	9	8613
29/07/22	8637	8647	10	9570
1/08/22	8647	8656	9	8613
2/08/22	8656	8666	10	9570
3/08/22	8666	8676	10	9570
		8684		
4/08/22	8676		8	7656
5/08/22	8684	8691	7	6699
8/08/22	8691	8700	9	8613
9/08/22	8700	8710	10	9570
10/08/22	8710	8718	8	7656
11/08/22	8718	8727	9	8613
15/08/22	8727	8737	10	9570
16/08/22	8737	8742	5	4785
19/08/22	8742	8751	9	8613
22/08/22	8751	8758	7	6699
23/08/22	8758	8772	14	13398
25/08/22	8772	8782	10	9570
26/08/22	8782	8790	8	7656
3/09/22				
	8790	8795	5	4785
5/09/22	8795	8805	10	9570
6/09/22	8805	8814	9	8613
7/09/22	8814	8819	5	4785
8/09/22	8819	8829	10	9570
9/09/22	8829	8835	6	5742
12/09/22	8835	8848	13	12441
13/09/22	8848	8858	10	9570
14/09/22	8858	8867	9	8613
15/09/22	8867	8876	9	8613
16/09/22	8876	8881	5	4785
19/09/22			10	.,
	8881	8891		9570
20/09/22	8891	8900	9	8613
21/09/22	8900	8910	10	9570
23/09/22	8910	8919	9	8613
26/09/22	8919	8929	10	9570
27/09/22	8929	8938	9	8613
28/09/22	8938	8948	10	9570
29/09/22	8948	8957	9	8613
30/09/22	8957	8967	10	9570
4/10/22	8967	8977	10	9570
6/10/22	8977	8986	9	8613
7/10/22	8986	9004	18	17226
12/10/22	9004	9032	28	26796
17/10/22	9032	9041	9	8613
18/10/22	9041	9051	10	9570
19/10/22	9051	9060	9	8613
20/10/22	9060	9069	9	8613
21/10/22	9069	9079	10	9570
24/10/22	9079	9088	9	8613
25/10/22	9088	9098	10	9570
26/10/22	9098	9108	10	9570
28/10/22	9108	9117	9	8613
31/10/22	9117	9127	10	9570
1/11/22	9127	9136	9	8613
		1 11	-	0010
3/11/22	9136 9143	9143	9	6699 8613
4/11/22		9152	-	
7/11/22	9152	9161	9	8613
8/11/22	9161	9170	9	8613
9/11/22	9170	9179	9	8613
10/11/22	9179	9188	9	8613
11/11/22	9188	9198	10	9570
14/11/22	9198	9206	8	7656
15/11/22	9206	9215	9	8613
16/11/22	9215	9225	10	9570
17/11/22	9225	9235	10	9570
21/11/22	9235	9244	9	8613
22/11/22	9244	9252	8	7656
23/11/22	9252	9259	7	6699
24/11/22	9259	9265	6	5742
25/11/22	9265	9275	10	9570
26/11/22	9275	9284	9	8613
27/11/22	9284	9293	9	8613
30/11/22	9293	9302	9	8613
1/12/22	9302	9313	11	10527
5/12/22	9313	9322	9	8613
6/12/22	9322	9331	9	8613
7/12/22	9331	9341	10	9570
8/12/22	9341	9358	17	16269
12/12/22	9358	9362	4	3828
13/12/22	9362	9372	10	9570
14/12/22	9372	9382	10	9570
15/12/22	9382	9391	9	8613
	9391	9400	9	8613
16/12/22			- 40	0570
19/12/22	9400	9410	10	9570
	9400 9410	9410 9419	9	8613

Note: information provided by PFF in August 2022 &23

1 Jan 2022 to 31 Dec 2022

TOTAL (m3)	1465167
TOTAL (ML)	1465.167

Table 3-12B: Pumping Records; Lot 198 Clean Water Dam (July 2022- June 2023)

OATE START	METER READING START	METER READING FINISH	HOURS PUMPED (METER)	M3 PUMPED		
1/07/22	8478	8488	10	9570		
4/07/22	8488	8489	1	957 7656		
8/07/22 9/07/22	8489 8497	8497 8500	8	2871		
11/07/22	8500	8515	15	14355		
12/07/22	8515	8525	10	9570		
13/07/22	8525	8533	8	7656		
14/07/22	8533	8543	10	9570		
15/07/22 18/07/22	8543 8552	8552 8561	9	8613 8613		
19/07/22	8561	8571	10	9570		
20/07/22	8571	8580	9	8613		
21/07/22	8580	8590	10	9570		
22/07/22 25/07/22	8590 8599	8599 8608	9	8613 8613		
26/07/22	8608	8618	10	9570		
27/07/22	8618	8628	10	9570		
28/07/22	8628	8637	9	8613		
29/07/22	8637	8647	10	9570		
1/08/22 2/08/22	8647 8656	8656 8666	10	8613 9570		
3/08/22	8666	8676	10	9570		
4/08/22	8676	8684	8	7656		
5/08/22	8684	8691	7	6699		
8/08/22	8691	8700	9	8613		
9/08/22	8700	8710	10	9570		
10/08/22 11/08/22	8710 8718	8718 8727	8	7656 8613		
15/08/22	8727	8737	10	9570		
16/08/22	8737	8742	5	4785		
19/08/22	8742	8751	9	8613		
22/08/22 23/08/22	8751 8758	8758 8772	7	6699 13398		
25/08/22	8772	87/2	14	9570		
26/08/22	8782	8790	8	7656		
3/09/22	8790	8795	5	4785		
5/09/22	8795	8805	10	9570		
6/09/22 7/09/22	8805 8814	8814 8819	9	8613 4785		
8/09/22	8819	8829	10	9570		
9/09/22	8829	8835	6	5742		
12/09/22	8835	8848	13	12441		
13/09/22	8848	8858	10	9570		
14/09/22 15/09/22	8858 8867	8867 8876	9	8613 8613		
16/09/22	8876	8881	5	4785		
19/09/22	8881	8891	10	9570		
20/09/22	8891	8900	9	8613		
21/09/22	8900 8910	8910 8919	10	9570		
23/09/22 26/09/22	8919	8919	10	8613 9570		
27/09/22	8929	8938	9	8613		
28/09/22	8938	8948	10	9570		
29/09/22	8948	8957	9	8613		
30/09/22 4/10/22	8957 8967	8967 8977	10 10	9570 9570		
6/10/22	8977	8986	9	8613		
7/10/22	8986	9004	18	17226		
12/10/22	9004	9032	28	26796		
17/10/22	9032 9041	9041	9	8613		
18/10/22 19/10/22	9051	9051 9060	10	9570 8613		
20/10/22	9060	9069	9	8613		
21/10/22	9069	9079	10	9570		
24/10/22	9079	9088	9	8613		
25/10/22 26/10/22	9088 9098	9098 9108	10	9570 9570		
28/10/22	9108	9108	9	8613		
31/10/22	9117	9127	10	9570		
1/11/22	9127	9136	9	8613		
3/11/22	9136	9143	7	6699		
4/11/22 7/11/22	9143 9152	9152 9161	9	8613 8613		
8/11/22	9161	9170	9	8613		
9/11/22	9170	9179	9	8613		
10/11/22	9179	9188	9	8613		
11/11/22	9188	9198	10	9570		
14/11/22 15/11/22	9198 9206	9206 9215	8	7656 8613		
16/11/22	9215	9213	10	9570		
17/11/22	9225	9235	10	9570		
21/11/22	9235	9244	9	8613		
22/11/22	9244	9252	8	7656		
23/11/22 24/11/22	9252 9259	9259 9265	7	6699 5742		
25/11/22	9259	9265	6	9570		
26/11/22	9275	9284	9	8613		
27/11/22	9284	9293	9	8613		
30/11/22	9293	9302	9	8613		
1/12/22	9302	9313	11	10527		
5/12/22 6/12/22	9313 9322	9322 9331	9	8613 8613		
7/12/22	9331	9331	10	9570		
8/12/22	9341	9358	17	16269		
12/12/22	9358	9362	4	3828		
13/12/22	9362	9372	10	9570		
14/12/22 15/12/22	9372 9382	9382 9391	10	9570 8613		
16/12/22	9382	9391	9	8613		
19/12/22	9400	9410	10	9570		
20/12/22	9410	9419	9	8613		
		9479	10	0.570		
21/12/22 9/01/23	9419 9429	9429	10 10	9570 9570		

11/01/23	9450	9461	11	10527
12/01/23 13/01/23	9461 9472	9472 9483	11	10527 10527
16/01/23	9483	9511	28	26796
19/01/23	9511	9521	10	9570
20/01/23 24/01/23	9521 9540	9540 9548	19	18183 7656
25/01/23	9548	9571	23	22011
31/01/23 1/02/23	9571 9575	9575 9585	4 10	3828 9570
2/02/23	9585	9593	8	7656
3/02/23	9593	9601	8	7656
6/02/23 8/02/23	9601 9607	9607 9614	6	5742 6699
9/02/23	9614	9624	10	9570
10/02/23	9624 9630	9630 9640	6	5742
13/02/23 14/02/23	9640	9650	10	9570 9570
15/02/23	9650	9658	8	7656
16/02/23 17/02/23	9658 9668	9668 9673	10	9570 4785
21/02/23	9673	9680	7	6699
22/02/23	9680	9706	26	24882
27/02/23 28/02/23	9706 9715	9715 9720	9	8613 4785
1/03/23	9720	9729	9	8613
2/03/23 3/03/23	9729 9739	9739 9748	10	9570 8613
6/03/23	9748	9758	10	9570
7/03/23	9758	9764	6	5742
8/03/23 9/03/23	9764 9772	9772 9781	8	7656 8613
10/03/23	9781	9791	10	9570
13/03/23	9791	9798	7	6699
14/03/23 15/03/23	9798 9808	9808 9814	10	9570 5742
16/03/23	9814	9824	10	9570
17/03/23	9824	9833	9	8613
20/03/23 21/03/23	9833 9848	9848 9852	15	14355 3828
22/03/23	9852	9861	9	8613
23/03/23 24/03/23	9861 9870	9870	9	8613
25/03/23	9878	9878 9887	8	7656 8613
27/03/23	9887	9897	10	9570
28/03/23 29/03/23	9897 9906	9906 9915	9	8613 8613
30/03/23	9915	9924	9	8613
31/03/23	9924	9933	9	8613
3/04/23 4/04/23	9933 9935	9935 9967	2 32	1914 30624
12/04/23	9967	9976	9	8613
13/04/23	9976	9986	10	9570
14/04/23 17/04/23	9986 9996	9996 10005	10	9570 8613
18/04/23	10005	10014	9	8613
19/04/23	10014	10024	10	9570
20/04/23 21/04/23	10024 10033	10033 10038	5	8613 4785
22/04/23	10038	10043	5	4785
24/04/23 27/04/23	10043 10052	10052 10061	9	8613
28/04/23	10052	10061	10	8613 9570
1/05/23	10071	10078	7	6699
2/05/23 3/05/23	10078 10087	10087 10101	9	8613 13398
5/05/23	10101	10110	9	8613
8/05/23	10110	10120	10	9570
9/05/23 10/05/23	10120 10129	10129 10139	9	8613 9570
11/05/23	10139	10145	6	5742
12/05/23	10145	10155	10	9570
15/05/23 16/05/23	10155 10164	10164 10174	9	8613 9570
17/05/23	10174	10184	10	9570
18/05/23 19/05/23	10184 10193	10193 10200	9	8613 6699
22/05/23	10200	10210	10	9570
23/05/23	10210	10227	17	16269
25/05/23 28/05/23	10227 10236	10236 10246	9	8613 9570
29/05/23	10246	10255	9	8613
30/05/23 31/05/23	10255 10265	10265 10275	10 10	9570 9570
1/06/23	10265	102/5	7	6699
2/06/23	10282	10291	9	8613
5/06/23 6/06/23	10291 10301	10301 10308	10	9570 6699
7/06/23	10308	10318	10	9570
8/06/23	10318	10327	9	8613
9/06/23 13/06/23	10327 10336	10336 10344	9	8613 7656
14/06/23	10344	10354	10	9570
15/06/23	10354 10363	10363 10373	9	8613 9570
16/06/23 19/06/23	10363	10373	9	8613
20/06/23	10382	10392	10	9570
21/06/23	10392 10402	10402 10409	10	9570 6699
		10707		8613
22/06/23 23/06/23	10409	10418	9	8013
22/06/23 23/06/23 26/06/23	10409 10418	10428	10	9570
22/06/23 23/06/23 26/06/23 27/06/23	10409 10418 10428	10428 10437	10	9570 8613
22/06/23 23/06/23 26/06/23	10409 10418	10428	10	9570

1 July 2022 to 30 June 2023

TOTAL (m3)	1903473
TOTAL (ML)	1903.473

Table 3-13: Maroota Hitchcock Road & Lot 198- Surface Water Analyses for Creeks (2018 - 2023)

Sites: Lot 198 & Hitchcock Rd

Water Sample ID		Guideline Limits	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Lot 198	Downstream Lot 198
Date	Units		16/6/23	14/3/23	19/12/22	29/9/22	22/3/22	20/12/21	21/9/21	23/6/21	14/12/20	23/9/20	30/6/20	23/3/20	13/12/19	2/9/19	5/12/18	11/4/19	3/9/18
pH		=+/- 1 (BG)	6.23	6.56	6.38	7.27	6.37	5.76	6.75	5.75	6.04	5.85	5.91	6.24	5.6	5.86	5.35	6.72	5.7
Electrical Conductivity, EC	uS/cm	<1500	206	173	208	220	107	212	200	205	194	193	182	221	210	224	291	225	201
Suspended Solids (SS)	mg/L	<50	<5	<5	6	8	24	7	<5	<5	<5	<5	NA	NA	NA	18	<5	8	4.5
Turbidity	NTU	<50											NA	6	<5	NA	1.5	10.5	1.5
Oil& Grease	mg/L	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.1
Total Dissolved Solids	mg/L			127	107				130			136	124						108
Major Ions																			
Calcium	mg/L		NA	4	4	7	4			3	2	3	4		3	6			
Magnesium	mg/L			5	5	7	2			6	4	4	4		4	4			
Sodium	mg/L			21	23	21	13			29	25	29	30		30	25			
Potassium	mg/L			2	3	4	3			2	1	2	2		2	2			
Bicarbonate	mg/L		9	6	10	10	13			2	6	4	8		4	8			
Total Alkalinity	mg/L		9	6	10	10	13			2	6	4	8		4	8			
Sulphate	mg/L		18	16	21	34	16			24	6	14	6		9	16			
Chloride	mg/L		48	36	42	38	20			43	46	45	48		53	46			

Notes:

Water samples collected by Melissa Mass of SE Environmental Pty Ltd Note 1: Analyses by Boral Laboratory in Sept 2019 Note 2: Analyses by ALS Laboratory in Dec 2018, April /May 2019 to 2023

BG= background. Sample locations shown on Figures 1 & 5

Laboratory reports by ALS are provided in separate documentation. Summary results table provided for future reference

No Site Access- June & September 2022 (too wet)

Water Sample ID		Guideline Limits	Hitchcock Tailings	Hitchcock Rd Crk	Hitchcock Rd	Hitchcock Rd Crk	Hitchcock Rd	Hitchcock Rd- Little Catai Crk												
Date	Units		23/9/20	16/6/23	14/3/23	19/12/22	29/9/22	22/3/22	20/12/21	21/9/21	23/6/21	14/12/20	23/9/20	30/6/20	23/3/20	13/12/19	2/9/19	5/12/18	11/4/19	1/9/18
pH		=+/- 1 (BG)	5.52	6.05	6.41	6.02	NA	6.53	6.85	5.84	5.73	5.6	5.36	5.24	5.54	5.02	5.04	4.4	5.22	4.4
Electrical Conductivity, EC	uS/cm	<1500	129	108	108	116		170	139	151	148	187	173	179	225	193	282	236	241	187
Suspended Solids (SS)	mg/L	<50	9	<5	<5	<5		<5	11	< 5	<5	<5	<5	NA	NA	NA	9	<5	5	6.5
Turbidity	NTU	<50												NA	< 5	<5	9	0.3	0.3	1.1
Oil& Grease	mg/L	<10	<5	<5	<5	<5		<5	<5	<5	<5	<5	<5	<5	< 5	<5	< 5	<5	<5	<0.1
Total Dissolved Solids	mg/L		96		64	70				114			130	110						95
Major Ions																				
Calcium	mg/L		3	NA	1	1		3			1	<1	<1	<1		<1	2			
Magnesium	mg/L		3		3	3		5			4	4	4	5		4	7			
Sodium	mg/L		16		13	13		21			21	23	26	28		22	33			
Potassium	mg/L		3		3	3		4			3	2	2	2		<1	2			
Bicarbonate	mg/L		2	5	5	6		8			4	2	2	4		2	<1			
Total Alkalinity	mg/L		2	5	5	6		8			4	2	2	4		2	<1			
Sulphate	mg/L		9	5	4	3		7			4	2	6	4		2	6			
Chloride	mg/L		30	28	27	31		40			40	46	45	48		46	68			

Table 3-14: Water Analyses for New Wells at Pits 8 & 13 (Nov 2020, Aug 2021, Sept 2022, & Aug 2023)

Site; 4378 Old Northern Rd, Maroota

Maroota New Wells	units	PFPit8MW 6D	PFPit8MW6D	PFPit8MW6D	PFPit8MW6D	PFPit13MW 7D	PFPit13MW 7D	PFPit13MW 7D	PFPitMW 8B	PFPitMW 8B	PFPit8MW 8C	PFPit8MW 8C	PFPit8MW 8D	PFPit8MW 8D	Pit 8 Pond	Pit 8 Pond
		Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Tertiary Sands	Tertiary Sands	Tertiary Sands	Tertiary Sands	Tertiary Sands	Tertiary Sands	Stormwater Pond	Stormwater Pond
Date		15/8/2023	15/9/2022	17/8/2021	02/11/2020	16/8/2023	15/9/2022	17/8/2021	02/11/2020	17/8/2021	02/11/2020	17/8/2021	02/11/2020	17/8/2021	02/11/2020	17/8/2021
pH		5.68	5.63	5.39	5.63	4.05	4.06	4.09	6.37	4.76	6.13	4.44	6.22	4.82	5.61	5.34
Electrical Conductivity, EC	uS/cm	64	69	97	118	445	435	438	78	49	143	100	87	57	47	54
Total Dissolved Solids (ALS)	mg/L	51	38	61	62	258	226	254	79	32	216	65	56	49	31	35
Calcium, Ca	mg/L	1	1	<1	2	<1	<1	1	6	<1	6	<1	3	1	<1	<1
Magnesium, Mg	mg/L	2	2	4	3	8	8	8	1	1	3	4	1	1	<1	1
Sodium, Na	mg/L	6	8	10	12	60	57	58	7	5	13	12	9	7	6	8
Potassium, K	mg/L	2	1	2	3	1	1	1	1	<1	1	1	4	2	1	2
Bicarbonate, HCO3	mglL	3	4	<1	3	<1	<1	<1	10	<1	6	<1	4	<1	2	<1
Sulphate, SO4	mg/L	2	2	<1	4	4	4	3	6	1	8	<1	12	4	4	6
Chloride, Cl	mg/L	11	13	19	19	130	127	126	12	10	23	21	13	11	8	14
Oil& Grease	mg/L	<5	<5	<5	<5	<5	< 5	< 5	<5	<5	<5	<5	<5	<5	<5	<5

Groundwater samples collected by D.Parisotto from Earth2Water Pty Ltd
Samples analysed by ALS Environmental (NATA acredited laboratory)
No access to Pit 8 wells (PFPit8MW-8A to MW-8G) or Pond 8 during 2021- 2022 due to flood/muddy site. Pit 8 quarry backfilled in late 2022 to early 2023 and wells decommissioned

APPENDIX A

LIMITATIONS

Earth2Water Pty Ltd has prepared this report for the use of PF Formation Pty Ltd (PFF) in accordance with the standard terms and conditions of the consulting profession. This report is prepared in accordance with a generalised scope of work. The methodology adopted and sources of information used by E2W are outlined in this report. Information for the groundwater and surface water study were also provided by Melissa Mass of SE Environmental Pty Ltd.

This report was prepared during August/September 2023 and is based on the information reviewed at the time of preparation. This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

The precision with which conditions are indicated depends largely on the frequency and method of sampling, and the uniformity of conditions as constrained by the project budget limitations. The behaviour of groundwater and some aspects of contaminants in soil and groundwater are complex. Our conclusions are based upon the analytical data presented in this report, and our experience.

Where conditions encountered at the site are subsequently found to differ significantly from those anticipated in this report, E2W should be notified of any such findings and be provided with an opportunity to review the recommendations of this report.

APPENDIX B-1

Analytical Laboratory Certificates (ALS, August 2023) Groundwater Wells

NAME:	NAME:	T	2	3) -	7			4	2	7					7		2	<			Josh Graham	INVOICE to:	P.O. NO	Site: Maroota	DATA N	SENDE	CLIENT
OF: Earth2Water NAME: OF:	NAME: Dino Parisotto		Por167 Dam	CWD		PF-3	PF-2	PF-1	PF167MW-4S	PF167MW-4D	PF167MW-3D	PF167MW-2S	PF167MW-2D	PF 198 PB1	PF 198 PB3	PF P214 MW1	PF L2 Hicth MW1	PF 166 MW1	PF 167 MW-1	SAMPLEID		Josh Graham iosh@pfformation.com.au	E to:	P.O. NO.: E2W-224A	aroota	DATA NEEDED BY: 5 day turnaround	POSTAL ADDRESS: 175 Fern St. Gerringong NSW SEND REPORT TO: D.Parisotto	Earth2Water Pty Ltd
	N. N.		swater	swater		gwater	gweler	gwater	gwater	gwater	gwater	gwater	gwater	gwater	gwater	gwater	gwater	gwater	gwater	MATRIX	SAMPLE DATA		Ratain samp	COMMENTS	QUOTE NO.:	and	Serringong NSW	
	RELINQUISHED BY:		16.8-23	16823		57.391			16.8.23	110	16.8.25					16873		16.8.23	16.8.23	DATE TIME			Ratain samples for 3 weeks prior to disposal	SPECIAL HANDLING/S		REPORT NEEDED BY	SEND INVOICE TO: JOSh Graham	
DATE 178	8		3 "	106+11pla	\dashv	100 + 1600			4		06 + 15de			prizh 172	cliento	06 + 1Lph		11	06 + 14 kg	TYPE & PRESERVATIVE	ALS Containers		disposal	COMMENTS/SPECIAL HANDLING/STORAGE OR DIPOSAL:		REPORT NEEDED BY: 5 day turnaround (important)	OSh Graham	
OF:	3		YES	YES		YES	1		YES	YES	YES	TEN TEN	*	(78-22 YES	YES	YES	No.	YES	YES	NO.		_			OC LEVEL:	REPOR	PHONE	LABOR
2	Jach						Tele			-			ω m	-			,					N ω			/EL: QCS1:	REPORT FORMAT: HARD: Yes	PHONE: 0422 334102 E-MA	ABORATORY BATCH NO
	RECEIVED BY					0000 10000	Telephone: +61-2-9784 occs				LOCOCI 18	TOUS Heference	Environmental Division Sydney				W 100 N	1				4			QCS2:□	FAX:Yes	E-MAIL: dino@earth2water.com.au	VO
DATE TIME	2				-						Ö	n	ion				100		-250					ANALYSIS REQUIRED	18			
	5	,				water samples not filtered	Notes				mmass@southeastenvironmental.com.au	josh@pfformation.com.au	Email lab reports & COC to 3 recipients dino@earth2water.com.au					1 Ca, Mg, Na, K, Cl, HCO3, SO4	1 Ph, EC, TDS,	1 Oil & Grease		Laboratory Analyses		REQUIRED	QCS4;□;	BULLETIN BOARD; DE-MAIL: Yes	Smithfield	ALS Elivilolilleliai

CERTIFICATE OF ANALYSIS

Work Order : ES2327640

Client : EARTH2WATER PTY LTD

Contact : MR DINO PARISOTTO

Address : 175 FERN ST

GERRINGONG NSW 2534

Telephone : ---Project : ----

Order number : E2W-224A

C-O-C number : ----

Sampler : Melissa Mass Site : Maroota Quote number : SYBQ/408/21

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 16-Aug-2023 14:49

Date Analysis Commenced : 18-Aug-2023

Issue Date : 24-Aug-2023 08:38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2327640

Client : EARTH2WATER PTY LTD

Project : ---

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

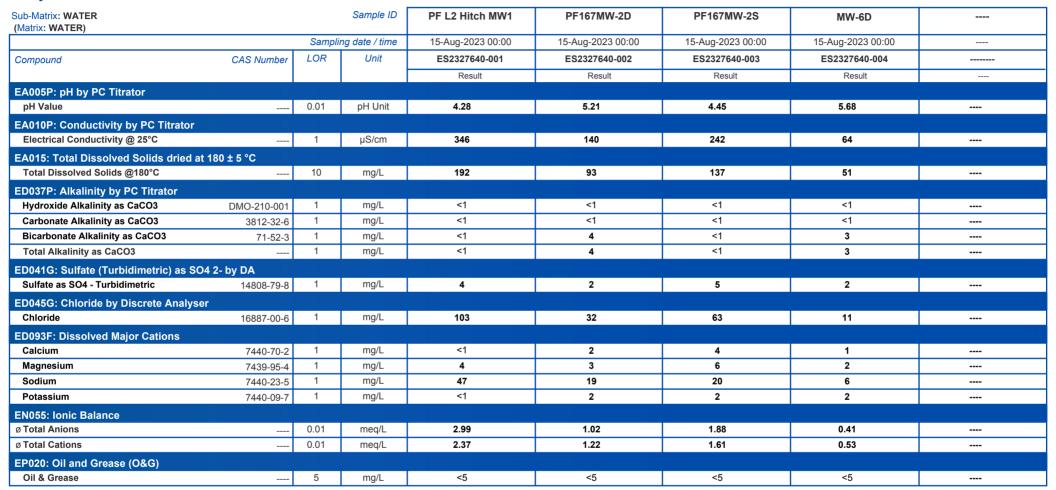
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- TDS by method EA-015 may bias high for sample 4 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- EN055: Ionic Balance out of acceptable limits for sample ES2327640-#001 due to analytes not quantified in this report.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate. Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Page : 3 of 3 Work Order : ES2327640

Client : EARTH2WATER PTY LTD

Project : ---

CERTIFICATE OF ANALYSIS

Work Order : **ES2327795** Page : 1 of 5

Amendment : 1

Client : **PF FORMATION** Laboratory : Environmental Division Sydney

Contact : Josh Graham Contact : Customer Services ES

Address : 1 Patrica Fay Drive Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAROOTA 2756

 Telephone
 : -- Telephone
 : +61-2-8784 8555

 Project
 : Maroota
 Date Samples Received
 : 17-Aug-2023 12:45

Order number : --- Date Analysis Commenced : 18-Aug-2023

C-O-C number : ---- Issue Date : 30-Aug-2023 13:40

Sampler : Melissa Mass

Site : ---Quote number : EN/333

No. of samples received

No. of samples analysed : 12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with

not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 12

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW

Page : 2 of 5

Work Order : ES2327795 Amendment 1

Client : PF FORMATION

Project · Maroota

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- EN055: Ionic Balance out of acceptable limits for sample ES2327795-#010 due to analytes not quantified in this report.
- Amendment (24/085/2023): This report has been amended and re-released to allow the reporting of additional analytical data, for sample MW-7D which was previously on hold.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Page

: 3 of 5 : ES2327795 Amendment 1 Work Order : PF FORMATION Client

Project Maroota

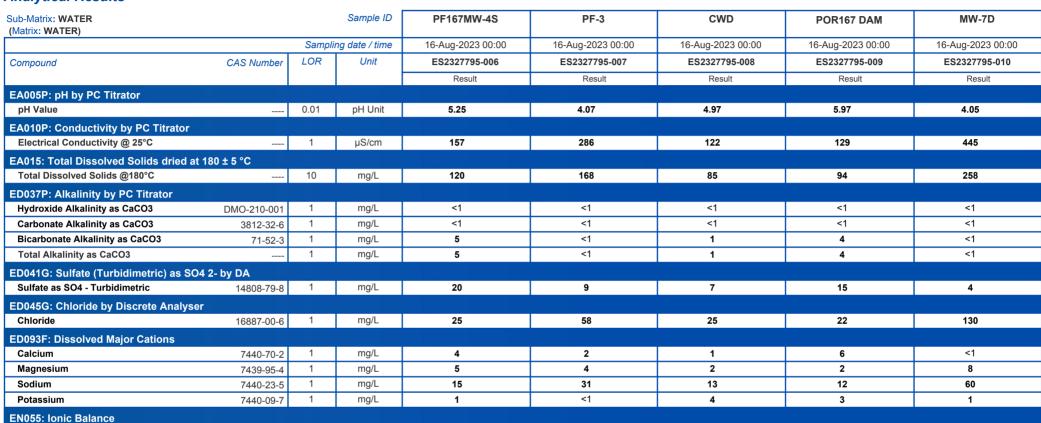
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	PF 167 MW-1	PF 166 MW1	PF 214 MW1	PF167MW-3D	PF167MW-4D
(Math. Water)		Sampli	ng date / time	16-Aug-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2327795-001	ES2327795-002	ES2327795-003	ES2327795-004	ES2327795-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.43	4.60	4.36	4.33	6.32
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	169	146	211	118	162
EA015: Total Dissolved Solids dried at	180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	127	119	120	72	120
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	2	<1	<1	15
Total Alkalinity as CaCO3		1	mg/L	4	2	<1	<1	15
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	26	14	3	2	4
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	26	24	50	24	19
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	4	2	<1	<1	5
Magnesium	7439-95-4	1	mg/L	4	5	6	2	2
Sodium	7440-23-5	1	mg/L	14	10	20	12	22
Potassium	7440-09-7	1	mg/L	4	2	1	<1	<1
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	1.35	1.01	1.47	0.72	0.92
ø Total Cations		0.01	meq/L	1.24	1.00	1.39	0.69	1.37
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5	<5	<5

Page : 4 of 5

Work Order : ES2327795 Amendment 1
Client : PF FORMATION

Project : Maroota

Analytical Results


ø Total Anions

ø Total Cations

Ø Ionic Balance

Oil & Grease

EP020: Oil and Grease (O&G)

1.82

1.78

<5

0.87

0.88

<5

1.01

1.06

<5

0.01

0.01

0.01

5

meq/L

meg/L

%

mg/L

1.22

1.29

<5

3.75

3.29

6.48

<5

Page

: 5 of 5 : ES2327795 Amendment 1 Work Order : PF FORMATION Client

Project Maroota

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	PF 198 PB3	PF 198 PB1	 	
(Madada IIII Ziriy		Sampli	ng date / time	16-Aug-2023 00:00	16-Aug-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2327795-011	ES2327795-012	 	
				Result	Result	 	
EA005P: pH by PC Titrator	1 11 1	a a					
pH Value		0.01	pH Unit	6.29	4.83	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	154	163	 	
EA015: Total Dissolved Solids dried at 18	80 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	82	92	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	22	<1	 	
Total Alkalinity as CaCO3		1	mg/L	22	<1	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	4	8	 	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	28	34	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	2	1	 	
Magnesium	7439-95-4	1	mg/L	5	2	 	
Sodium	7440-23-5	1	mg/L	17	20	 	
Potassium	7440-09-7	1	mg/L	2	2	 	
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	1.31	1.12	 	
ø Total Cations		0.01	meq/L	1.30	1.14	 	
EP020: Oil and Grease (O&G)							
Oil & Grease		5	mg/L	<5	<5	 	

APPENDIX B-2

Creek Monitoring Results
SEE field testing & ALS Laboratory Reports
(September 2022,
December 2022, March 2023, June 2023)

Surface Water Monitoring

PF Formation - Maroota Quarries

Maroota NSW 2756

Location -	Lot 1	L98
------------	-------	-----

Location Lot 130				1		
Time of collection				Weather co	onditions	
(date/time)		29/09/	/2022 815am	(hot/cold/dry	/windy/raining)	Cool, calm, clear
Stream bank				Climate 3m	nths preceeding	Extreme rainfall
(rocky/sandy/muddy)		Ro	cky/sandy	(rainfall/droug	ght/extremes)	
Water flow rate				Stream dep	oth	
(fast/slow/none)		N	1oderate	(mm, cm or m	n)	1cm
Water clarity				Stream wid	lth	
(turbidity, sheen)			Clear	(mm, cm or m	1)	1.2m
Stream condition				Other obse	rvations	
(erosion, polutants)		Vegeta	ated on banks			
Field tests	рН	EC	TDS	Temp C°		

Site photo

Sample collected by - Melissa Mass/South East Environmental Signed Melíssa Mass

CERTIFICATE OF ANALYSIS

Work Order : **ES2234911**

Page : 1 of 4

Client : PF FORMATION

Laboratory : Environmental Division Sydney

Contact : Josh Graham

Contact : Customer Services ES

Address : 1 Patrica Fay Drive

MAROOTA 2756

Address

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : --Project : ---

Telephone
Date Samples Received

: +61-2-8784 8555

Order number : ---

Date Samples Received : 29-Sep-2022 14:50

C-O-C number : ----

Date Analysis Commenced : 01-Oct-2022

Sampler : Melissa Mass

Issue Date

: 07-Oct-2022 17:33

Site : --

: ----

Quote number : EN/333

: EIN/333

No. of samples received : 5
No. of samples analysed : 5

: 07-OCI-2022 17

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 825

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Wisam Marassa Sydney Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 4 Work Order : ES2234911

Client : PF FORMATION

Project · --

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

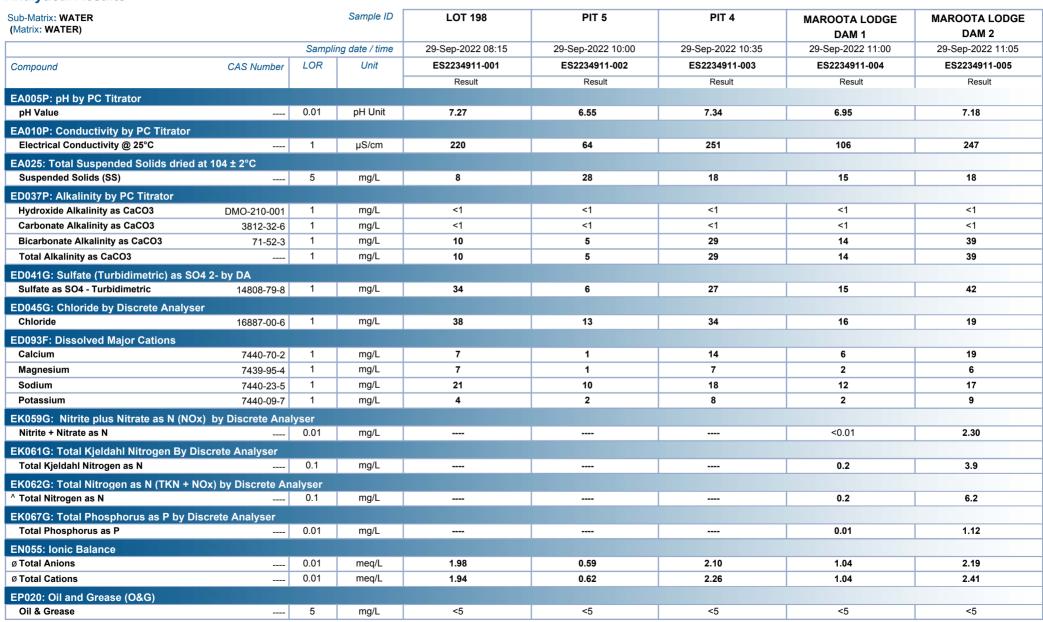
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EA010-P LCS recovery for Conductivity falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4 Work Order : ES2234911

Client : PF FORMATION

Project · ---

Page : 4 of 4
Work Order : ES2234911

Client : PF FORMATION

Project : ---

Surface Water Monitoring

PF Formation - Maroota Quarries

1 Patricia Fay Drive Maroota NSW 2756 Ph 45668314

Location - Hitchcock Road

Time of collection					Weather co	onditions	
(date/time)		19/12/2)22	10.50am	(hot/cold/dry	/windy/raining)	Warm, partly cloudy, still
Stream bank					Climate 3n	nths preceeding	
(rocky/sandy/muddy)		Sa	nd/r	ock	(rainfall/drou	ght/extremes)	Average rain
Water flow rate					Stream de	oth	
(fast/slow/none)		M	oder	ate	(mm, cm or m	1)	10cm - 50cm
Water clarity					Stream wid	lth	
(turbidity, sheen)			Clea	r	(mm, cm or m	n)	0.5 - 1.2m
Stream condition					Other obse	ervations	
(erosion, polutants)		Vege ⁻	ated	l, moss			
Field tests	рН	EC	ΓDS		Temp C°		

Site photo

Sample collected by Melissa Mass/South East Environmental
Signed Melissa Mass

Surface Water Monitoring

PF Formation - Maroota Quarries

1 Patricia Fay Drive Maroota NSW 2756 Ph 45668314

Location - Lot 198	Maroota NSW
--------------------	-------------

Time of collection				Weather co	onditions	
(date/time)		19/12	2/2022 8am	(hot/cold/dry	/windy/raining)	Warm, partly cloudy, still
Stream bank				Climate 3m	nths preceeding	Average rain
(rocky/sandy/muddy)		Sa	and/rock	(rainfall/drou	ght/extremes)	
Water flow rate				Stream dep	oth	
(fast/slow/none)		m	noderate	(mm, cm or m	n)	1cm - 30cm
Water clarity				Stream wid	lth	
(turbidity, sheen)			Clear	(mm, cm or m	n)	0.8-1.2m
Stream condition				Other obse	rvations	
(erosion, polutants)		Vegetated		vegetation	recovering from erosio	
Field tests	рН	EC	TDS	Temp C°		

Site photo

Sample collected by Melissa Mass/South East Environmental
Signed Melissa Mass

CERTIFICATE OF ANALYSIS

Work Order : ES2245900

: PF FORMATION Laboratory : Fnv

Contact : Josh Graham

Address : 1 Patrica Fay Drive

MAROOTA 2756

Telephone : ---Project : ----

Client

Order number : ---C-O-C number : ----

Sampler : MMass-SouthEastEnvironmental

Site : ----

Quote number : EN/333

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 19-Dec-2022 13:10

Date Analysis Commenced : 19-Dec-2022

Januar Data

Issue Date : 29-Dec-2022 21:29

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 4 Work Order : ES2245900

Client : PF FORMATION

Project · --

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

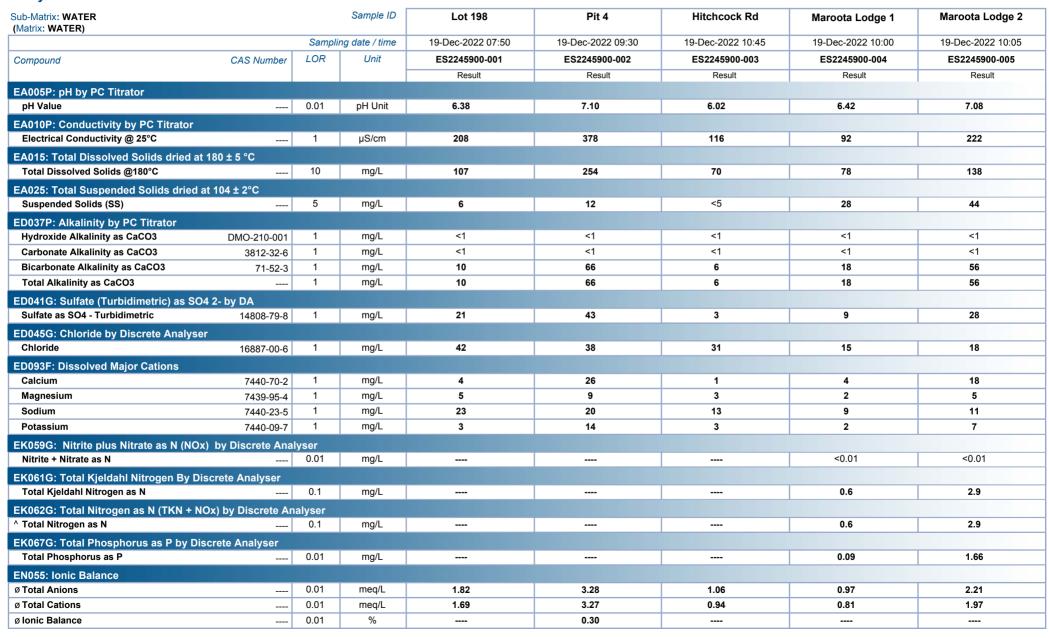
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- TDS by method EA-015 may bias high for sample 4 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4 Work Order : ES2245900

Client : PF FORMATION

Project · --

Page : 4 of 4
Work Order : ES2245900

Client : PF FORMATION

Project : --

ALS

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Lot 198	Pit 4	Hitchcock Rd	Maroota Lodge 1	Maroota Lodge 2
		Samplir	ng date / time	19-Dec-2022 07:50	19-Dec-2022 09:30	19-Dec-2022 10:45	19-Dec-2022 10:00	19-Dec-2022 10:05
Compound	CAS Number	LOR	Unit	ES2245900-001	ES2245900-002	ES2245900-003	ES2245900-004	ES2245900-005
				Result	Result	Result	Result	Result
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5	<5	8

Surface Water Monitoring

PF Formation - Maroota Quarries

1 Patricia Fay Drive Maroota NSW 2756 Ph 45668314

Hitchcock Road

Time of collection		Weather conditions	
(date/time)	14/03/2023 850am	(hot/cold/dry/windy/raining)	Cloudy/cool/calm
Stream bank		Climate 3mths preceeding	
(rocky/sandy/muddy)	Sand/Peat	(rainfall/drought/extremes)	Average
Water flow rate		Stream depth	
(fast/slow/none)	Fast-moderate	(mm, cm or m)	3cm - 30cm
Water clarity		Stream width	
(turbidity, sheen)	Clear	(mm, cm or m)	0.4m-2m
Stream condition		Other observations	
(erosion, polutants)	Vegetated/mossy		

 Field tests
 pH
 EC
 TDS
 Temp C°

 6.46 0.11mS
 60ppm
 19.5

Site photo

Sample collected by - Melissa Mass/South East Environmental

Signed Melíssa Mass

Surface Water Monitoring

PF Formation - Maroota Quarries

1 Patricia Fay Drive

Ph 45668314

Maroota NSW 2756

Time of collection	1			Weather co	onditions	
(date/time)		14/03/	2023 8.00am	(hot/cold/dry,	/windy/raining)	Cloudy/cool/calm
Stream bank				Climate 3m	nths preceeding	Average
(rocky/sandy/muddy)		R	ock/sand	(rainfall/droug	ght/extremes)	
Water flow rate				Stream dep	oth	
(fast/slow/none)		Fast	-moderate	(mm, cm or m	n)	3cm-30cm
Water clarity				Stream wid	lth	
(turbidity, sheen)			Clear	(mm, cm or m	n)	3m
Stream condition				Other obse	rvations	
(erosion, polutants)		Vegeta	ated on banks			
Field tests	рН	EC	TDS	Temp C°		

Site photo

Lot 198

Sample collected by - Melissa Mass/South East Environmental

Signed Melíssa Mass

CERTIFICATE OF ANALYSIS

Work Order : ES2308246

Page : 1 of 6 : PF FORMATION Laboratory

Contact : Josh Graham

Contact : Customer Services ES Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 Address : 1 Patrica Fay Drive

MAROOTA 2756

Telephone Telephone Date Samples Received Project

Order number C-O-C number

Sampler · M.Mass - South East Environmental

Site

Quote number : EN/333

No. of samples received : 6 No. of samples analysed : 6

: +61-2-8784 8555 : 14-Mar-2023 13:35 **Date Analysis Commenced** : 14-Mar-2023

: Environmental Division Sydney

Issue Date · 21-Mar-2023 16:13

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Inorganics Coordinator Sydney Inorganics, Smithfield, NSW Wisam Marassa

Page : 2 of 6 Work Order : ES2308246

Client : PF FORMATION

Project · --

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6
Work Order : ES2308246

Client : PF FORMATION

Project : ---

ALS

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Pit 5	Pit 4	Lot 198	Hitchcock Rd	Maroota Lodge Dam 1
		Sampli	ing date / time	14-Mar-2023 09:35	14-Mar-2023 10:05	14-Mar-2023 07:50	14-Mar-2023 00:00	14-Mar-2023 10:40
Compound	CAS Number	LOR	Unit	ES2308246-001	ES2308246-002	ES2308246-003	ES2308246-004	ES2308246-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.98	7.35	6.56	6.41	6.54
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	98	354	173	108	69
EA015: Total Dissolved Solids dried	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	65	212	127	64	62
EA025: Total Suspended Solids dried	d at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	10	<5	<5	<5	7
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	13	91	6	5	12
Total Alkalinity as CaCO3		1	mg/L	13	91	6	5	12
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	4	31	16	4	6
ED045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	1	mg/L	20	38	36	27	9
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	2	28	4	1	4
Magnesium	7439-95-4	1	mg/L	2	11	5	3	1
Sodium	7440-23-5	1	mg/L	13	23	21	13	7
Potassium	7440-09-7	1	mg/L	3	10	2	3	2
EK059G: Nitrite plus Nitrate as N (No	Ox) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L					<0.01
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L					0.3
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L					0.3
EK067G: Total Phosphorus as P by I	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L					0.03
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	0.91	3.54	1.47	0.94	0.62
ø Total Cations		0.01	meq/L	0.91	3.56	1.58	0.94	0.64
ø Ionic Balance		0.01	%		0.33			

Page : 4 of 6
Work Order : ES2308246

Client : PF FORMATION

Project : --

ALS

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Pit 5	Pit 4	Lot 198	Hitchcock Rd	Maroota Lodge Dam 1
		Samplii	ng date / time	14-Mar-2023 09:35	14-Mar-2023 10:05	14-Mar-2023 07:50	14-Mar-2023 00:00	14-Mar-2023 10:40
Compound	CAS Number	LOR	Unit	ES2308246-001	ES2308246-002	ES2308246-003	ES2308246-004	ES2308246-005
				Result	Result	Result	Result	Result
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	<5	<5	<5	<5	<5

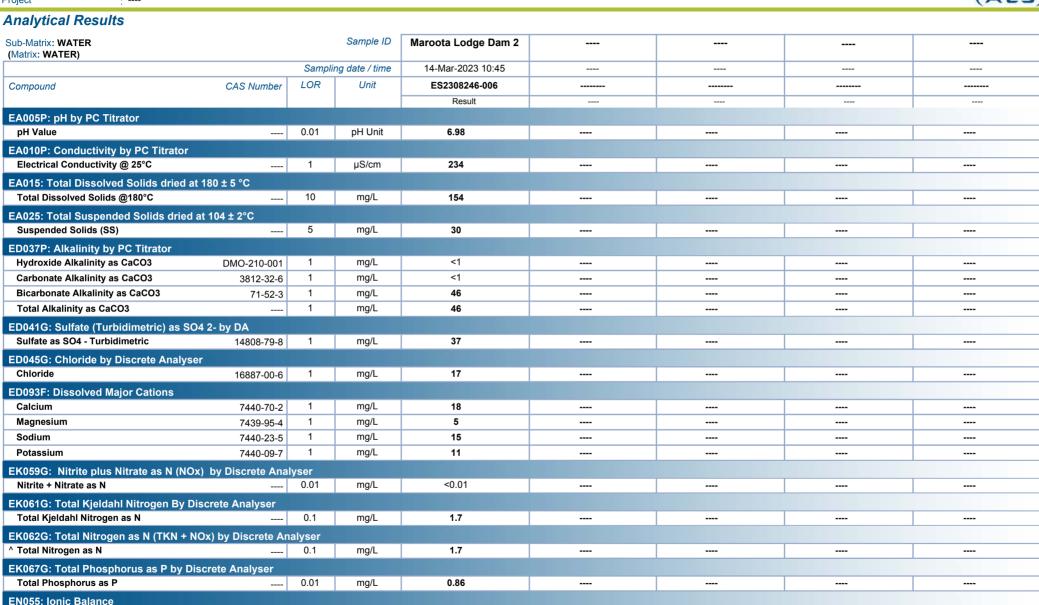
Page : 5 of 6 Work Order ES2308246

Client PF FORMATION

Project

Ø Total Anions

ø Total Cations


EP020: Oil and Grease (O&G)

0.01

0.01

meq/L

meq/L

2.17

2.24

Page : 6 of 6
Work Order : ES2308246

Client : PF FORMATION

Project : --

ALS

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Maroota Lodge Dam 2	 	
		Samplii	ng date / time	14-Mar-2023 10:45	 	
Compound	CAS Number	LOR	Unit	ES2308246-006	 	
				Result	 	
EP020: Oil and Grease (O&G) - Continued						
Oil & Grease		5	mg/L	<5	 	

Surface Water Monitoring

PF Formation - Maroota Quarries

1 Patricia Fay Drive Maroota NSW 2756 Ph 45668314

Location - Hitchcocks Road

Time of collection			Weather conditions	
(date/time)	late/time) 16/06/2023 1055am		(hot/cold/dry/windy/raining)	Cool, still, clear
Stream bank			Climate 3mths preceeding	
(rocky/sandy/muddy)	(rocky/sandy/muddy) Peat/Sand		(rainfall/drought/extremes)	Near normal
Water flow rate			Stream depth	
(fast/slow/none)	(fast/slow/none) Moderate		(mm, cm or m)	3cm - 40cm
Water clarity			Stream width	
(turbidity, sheen)		Clear	(mm, cm or m)	1m - 1.5m
Stream condition			Other observations	
(erosion, polutants) Vegetated/mossy				
Field tests	pH EC	TDS	Temp C°	

Site photo

Sample collected by - Melissa Mass/South East Environmental Signed Melissa Mass

Surface Water Monitoring

PF Formation - Maroota Quarries

1 Patricia Fay Drive Maroota NSW 2756 Ph 45668314

Location - Lot 198

Time of collection				Weather co	onditions		
(date/time)		16/06/	²⁰²³ 8.15am	(hot/cold/dry	/windy/raining)	Cool, still, clear	
Stream bank			Climate 3m	nths preceeding	Near normal		
(rocky/sandy/muddy)			Rock	(rainfall/drou	ght/extremes)		
Water flow rate				Stream de	oth		
(fast/slow/none)		N	1oderate	(mm, cm or m	1)	2cm - 40cm	
Water clarity				Stream wid	dth		
(turbidity, sheen)			Clear	(mm, cm or m	1)	20cm - 2m	
Stream condition			Other observations				
(erosion, polutants) Vegetated on banks							
Field tests	рН	EC	TDS	Temp C°			

Site photo

Sample collected by - Melissa Mass/South East Environmental Signed Melissa Mass

Client

CERTIFICATE OF ANALYSIS

Work Order : ES2320075

: PF FORMATION

Contact : Josh Graham

Address : 1 Patrica Fay Drive

MAROOTA 2756

Telephone

Project

Order number

C-O-C number

Sampler : Melissa Mass, South East Environmental

Site

Quote number : EN/333

No. of samples received : 5 No. of samples analysed : 5 Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 16-Jun-2023 13:35

Date Analysis Commenced : 16-Jun-2023

Issue Date : 22-Jun-2023 14:56

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Page : 2 of 3 Work Order : ES2320075

Client : PF FORMATION

Project · --

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

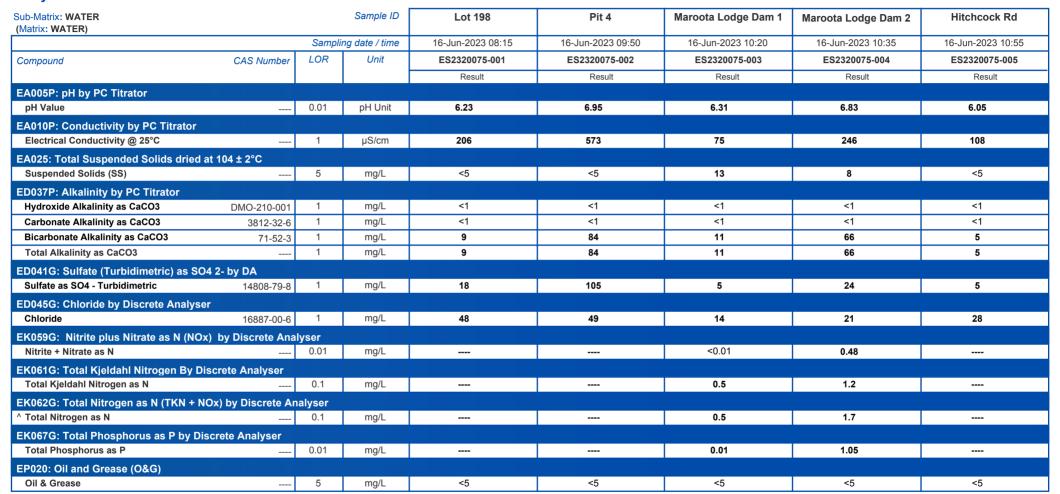
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

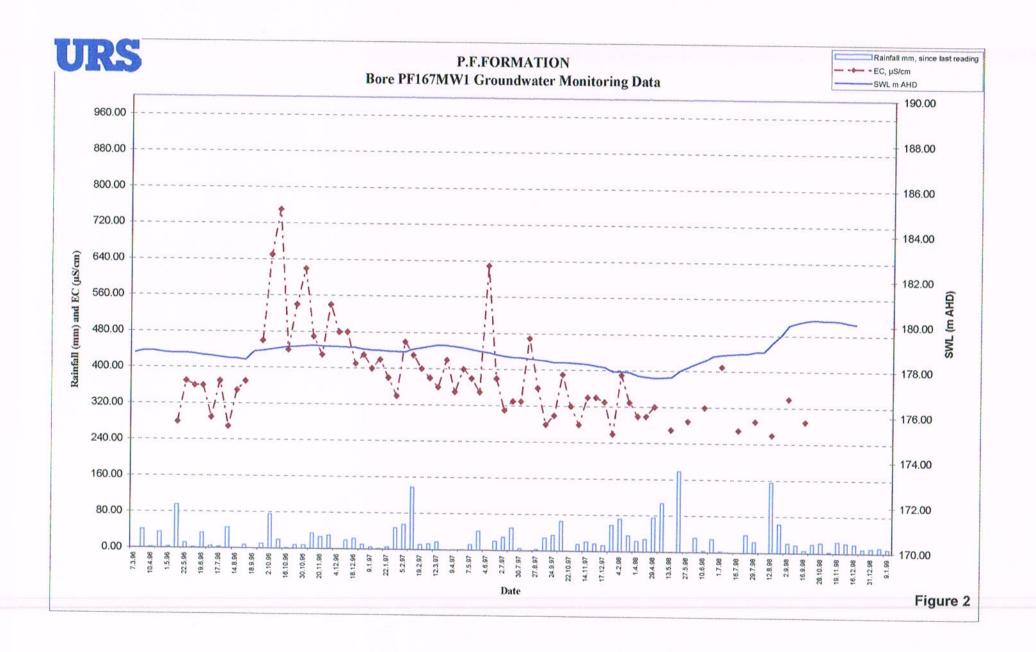

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Poor spike recovery for TKN due to matrix interferences(confirmed by re-analysis).

Page : 3 of 3 Work Order : ES2320075

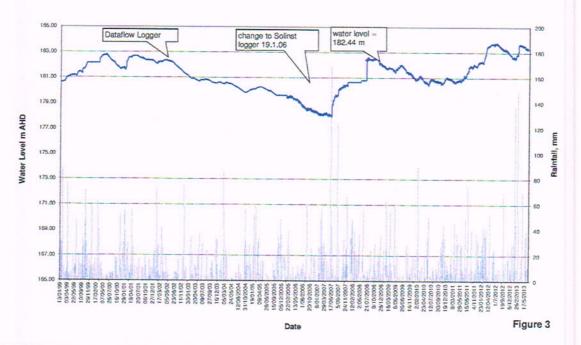
Client : PF FORMATION

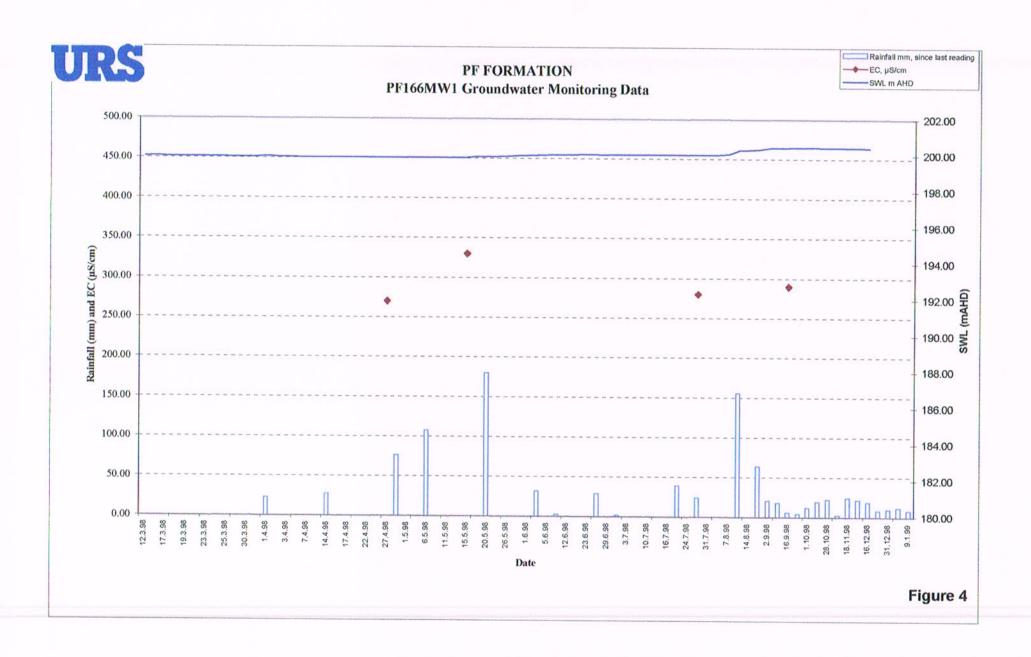
Project · --

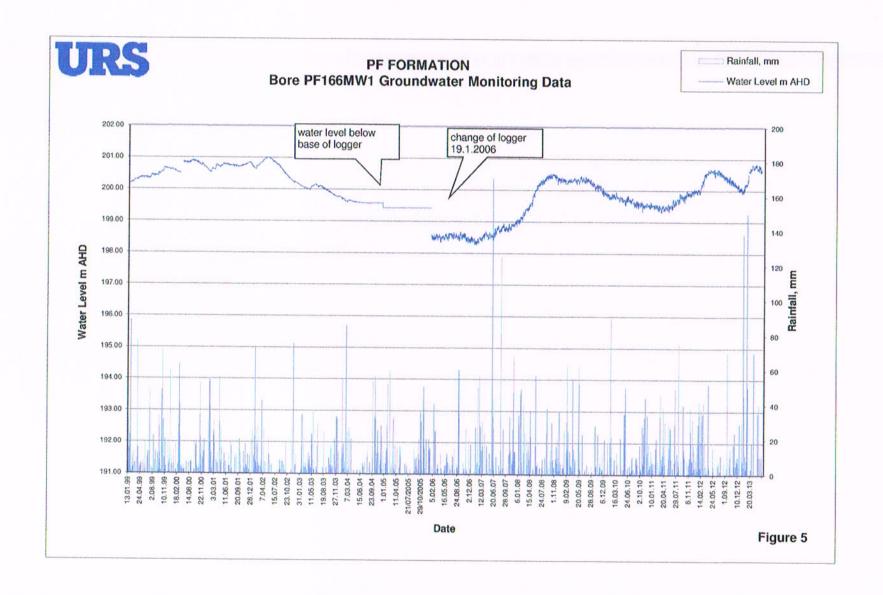


APPENDIX C

Previous Bore Hydrographs (URS, 2013)

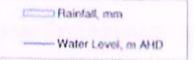


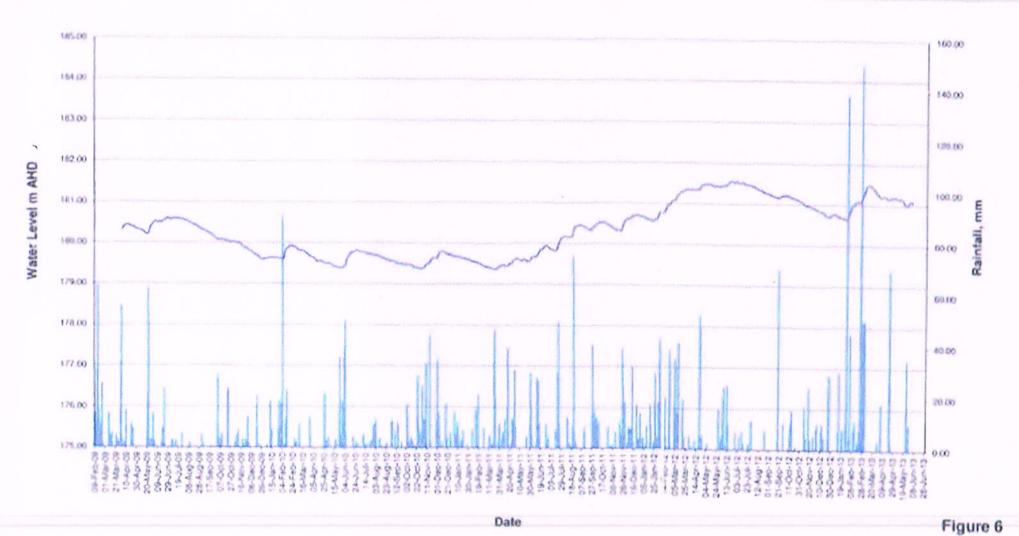

URS

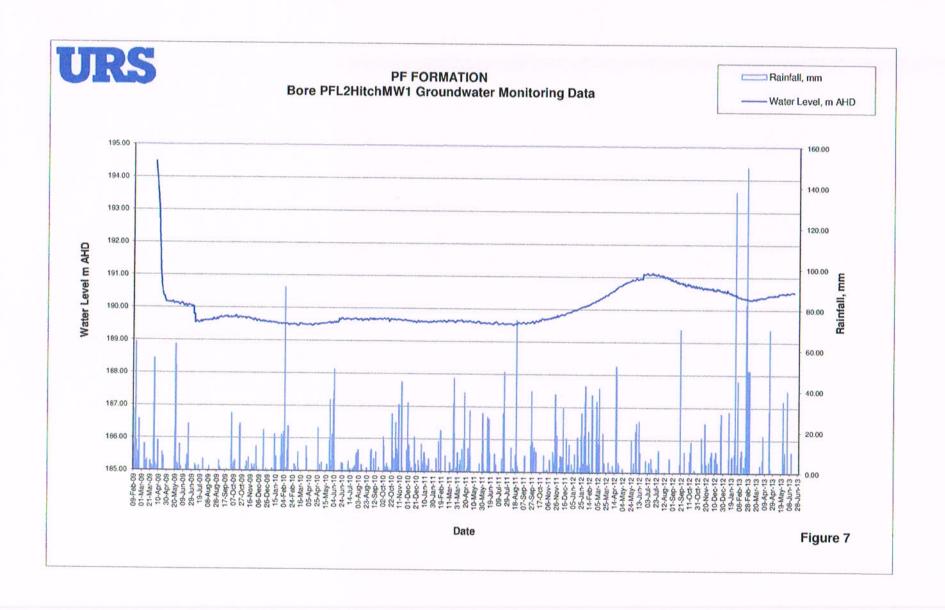

PF FORMATION Bore PF167MW1 Groundwater Monitoring Data

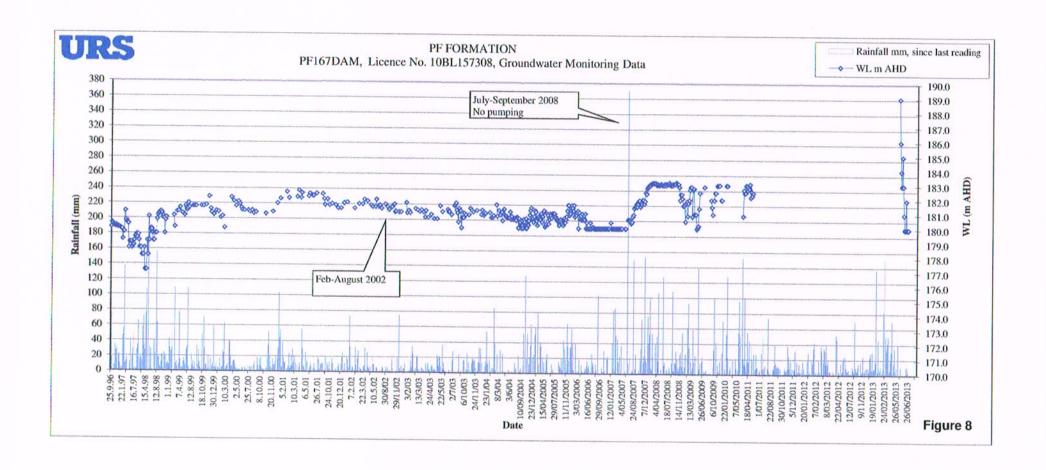
Rainfall, mm

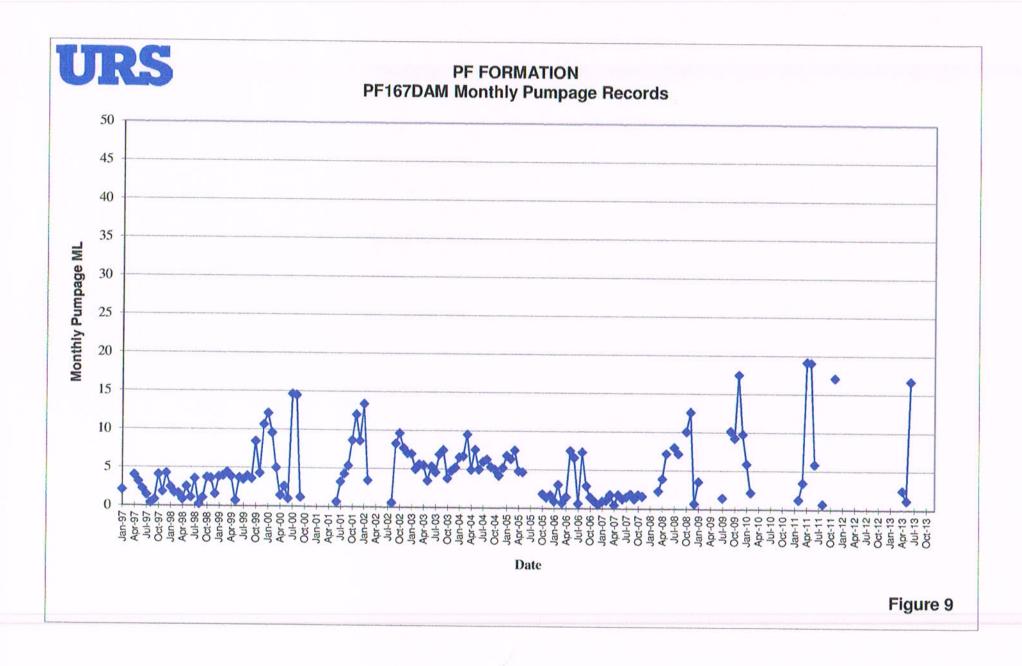
Water level m AHD










PF FORMATION Bore PFP214MW1 Groundwater Monitoring Data

APPENDIX D

Monthly Water Level Monitoring (2017 to 2023 @ SEE Pty Ltd) Hitchcock Road Wells (Table F1), New Wells at Pits 8 & 13 (Table F-2), and Existing wells PF-1,2,3 (Table F-3).

Table F1: Summary of Monthly Bore Water Monitoring (2017 - 2023) Hitchcock Road & Lot 198

Date	PF166MW	PF166MW	PF166MW	PF166MW -	PF166MW	PF166MW1	PF167MW1	PF214MW1	PFL2Hitch	PF167MW
	2D	-2S	3D	4D	4s				MW-1	-5D
7/06/2017 9/06/2017	182.05	205.4	184.53	185.93	185.83	199.55	183.12	179.41	189.6	179.78
17/07/2017	181.99	205.48	184.56	186.055	185.925	200.34	183.25	179.875	189.765	180.06
27/07/2017	181.92	205.375	185.275	185.945	185.86	200.2	165.25	175.675	189.73	180.07
15/08/2017	182.02	205.23	184.72	185.94	185.795	199.94	183.26	180.14	189.87	180.02
7/09/2017	181.99	205	184.57	185.78	185.74	199.71	183.04	180.13	189.85	179.885
23/10/2017	181.98	204.71	184.42	185.615	185.665	199.56	182.83	180.114	189.765	179.83
24/11/2017	181.97	204.53	184.34	185.51	185.63	199.44	182.68	180.1	189.705	179.75
18/12/2017	182.01	204.41	184.25	185.43	185.61	199.32	182.54	179.99		179.04
19/01/2018	181.94	204.25	184.41	185.31	185.59	199.18	182.37	179.93	189.64	179.54
13/02/2018	181.93	204.14	184.13	185.22	185.55	199.07	182.23	179.81	189.6	
12/03/2018	181.82	204.18	184.1	185.05	185.51	199	182.06	179.92	189.53	
9/04/2018 8/05/2018	181.81	204.07	184.03	184.86	185.46	dry	181.86 181.64	179.95 179.72	189.49	
12/06/2018	181.71 181.72	203.77 203.55	184.04 183.78	184.77 184.67	185.37 185.28		181.84	179.72	189.43 189.46	
10/07/2018	181.51	203.47	183.5	184.57	185.1		181.2	179.53	189.28	
7/08/2018	181.61	203.32	183.39	184.61	185.12		181.1	179.54	189.34	
13/09/2018	181.48	203.21	183.03	184.45	185.01		180.93	178.41	189.42	
11/10/2018	181.32	203.44	182.8	184.36	184.92		180.71	179.32	189.36	
7/11/2018	181.42	203.84	183.03	184.56	184.97		180.77	179.68	189.45	
11/12/2018	181.21	203.61	182.77	184.49	185.02		180.78	179.53	189.33	
17/01/2019	181.18	203.64	182.68	184.5	184.99		180.8	179.69	189.35	
14/02/2019	181.06	203.5	182.47	184.45	184.94		180.75	178.06	189.25	
7/03/2019	180.99	203.36	182.41	184.43	184.93		180.66	178.3	189.24	
11/04/2019	180.92	203.75	182.26	184.46	184.92		180.53	178.73	189.25	
14/05/2019	180.88	203.42	182.26	184.48	184.93		180.45	178.69	189.23	
19/06/2019 18/07/2019	180.9 180.92	203.2 203.16	182.17 182.09	184.44 184.4	184.92 184.91		180.32 180.24	178.76 179.04	189.24 189.26	
21/08/2019	180.89	203.16	182.09	184.4	184.91		180.24	179.04	189.26	
27/09/2019	180.85	203.08	181.91	184.4	184.87		180.25	179.67	189.17	
21/10/2019	180.73	203.69	181.93	184.56	184.91		180.33	179.64	189.3	
14/11/2019	180.81	203.5	182.05	184.52	185.04		180.26	179.8	189.26	
13/12/2019	180.76	203.37	181.96	184.47	185.02		180.15	180.06	189.24	
14/01/2020	180.71	203.23	181.8	184.41	184.94		180.05	179.28	189.22	
20/02/2020	180.71	205.14		184.62	184.95		180.19	180.06	189.22	
23/03/2020	180.52	204.5		185	185.92	199.19	181.01	180.62	189.22	
15/04/2020	180.64	204.46		185.15	185.93	199.04	181.26	180.77	189.31	
20/05/2020	180.64	204.05	402.07	185.1	185.79	199.15	181.37	180.7	189.38	
23/06/2020 24/07/2020	180.68 180.57	203.89	182.97 182.88	184.94 185.17	185.7 184.98	199.2 199.2	181.37 181.39	180.42 180.41	189.36 189.28	
28/08/2020	180.58	203.8	183.03	185.16	185.74	199.33	181.95	179.72	189.3	
23/09/2020	180.67	204.17	183.42	185.23	185.83	199.44	182.08	180.76	189.39	
22/10/2020	180.63	204	183.35	185.09	185.72	199.47	182.02	180.45	189.39	
23/11/2020	180.68	204.32	183.45	185.22	185.73	199.51	182.29	180.71	189.42	
14/12/2020	180.58	204.12	183.32	185.13	185.74	199.65	182.28	180.53	189.37	
25/01/2021	180.68	204.28	183.58	185.43	185.97		182.57	180.76	189.39	
15/02/2021	180.6	204.18	183.51	185.4	185.73	199.55	182.57	180.62	189.3	
29/03/2021	180.62	205.84	183.64	186.19	186.04	199.82	183.65	181.07	189.31	
26/04/2021	180.61	205.01	184.21	186.56	186.51	199.83	183.92	181.1	189.39	
26/05/2021	180.69	204.92	102.05	186.46	186.38	199.88	183.96	181.19	189.6	
23/062021 22/07/2021	180.69 180.76	204.92 204.62	183.95 184.52	186.32 186.05	186.25 185.97	199.89 199.9	183.75 183.55	180.96 180.93	189.59 189.63	
17/08/2021	180.75	204.62	184.42	185.87	185.97	199.9	183.38	180.93	189.59	
21/09/2021	180.8	204.58	184.34	185.69	185.71	199.81	183.24	180.69	189.57	
19/10/2021	180.82	204.52	184.28	185.61	185.69	199.78	183.14	180.5	189.53	
24/11/2021	180.84	204.74				199.88	183.04	180.45	189.53	
20/12/2021	180.88	205.18	184.19	185.56	185.66	199.68	183.27	180.73	189.46	
20/01/2022	180.8	205.06	184.2			199.65	183.2	180.56	189.39	
15/02/2022	180.86	205.19	184.26	185.56	185.81	199.67	183.08		189.36	
22/03/2022	180.99	206.69	185.19	188.21	188.33	200.7	185.48	181.26	189.47	
19/04/2022	181.02	206.71	 	1	1	201.1	185.6		189.99	
30/05/2022	101 21	206 27	106.05	100 40	100 47	201.2	185.16		190.8	
24/06/2022 22/07/2022	181.21	206.27	186.85	188.49	188.47	201.12 201.56	184.85 185.85		190.84 191.05	
16/08/2022	<u> </u>		 	<u> </u>	<u> </u>	201.30	103.03		131.03	
23/09/2022	 		 	 	<u> </u>	201.46	185.25		191.97	
20/10/2022	181.93	206.35	1	1	1	201.3	185.55		191.89	
24/11/2022	182.08	206.05	187.65	188.97	188.93	201.17	185.53		191.8	
19/12/2022	182.07	205.81	187.28	188.75	188.75	200.77	185.47	181.03	191.64	
16/01/2023	182.19	205.71	187.06	188.31	188.3	200.71	184.99	180.96	191.54	
17/02/2023	183.29	205.73	187.07	188.07	188.04	200.74	184.92	181.07	191.43	
14/03/2023	182.38	205.82	187.11	188.19	188.19	200.85	185.37	181.12	191.37	
11/04/2023	182.48	205.81	187.17	188.1	188.05	200.98	184.8	181.03	191.43	
12/05/2023	182.39	205.69	186.9	187.65	187.63	200.87	184.53	180.87	191.15	
16/06/2023	182.46	205.6	186.89	187.26	187.19	200.75	184.27	180.77	191.18	
14/07/2023	182.51	205.5	186.67	186.93	186.86	200.09	184.05	180.62	190.93	
16/08/2023	182.59	205.38	186.55	186.49	186.45	200.41	183.85	180.53	190.79	

Note: no data= area not accessible due to flooding & high rainfall

SWLs measured by M.Mass of SE Environmental

Table F1: Summary of Monthly Borewater Monitoring (2017-2023)

Lot 198 Water Supply Bores

Date	PB-3	PB-2	PB-1
	SWL (m,toc)	SWL (mtoc)	SWL (mtd
7/06/2017		18.6	18.6
19/07/2017		15.17	18.5
11/08/2017		14.42	18.51
23/10/2017		42.66	18.805
24/11/2017			18.705
19/01/2018			18.7
13/02/2018			34.76
12/03/2018			31.82
9/04/2018			30.02
8/05/2018			28.17
12/06/2018			27.16
10/07/2018			26.9
7/08/2018			26.29
14/09/2018			26.27 20.19
7/11/2018			19.83
11/12/2018			19.83
17/01/2019			19.76
14/02/2019			19.89
7/03/2019			20.03
11/04/2019			20.03
14/05/2019			20.09
19/06/2019			20.43
18/07/2019			22.09
21/08/2019			22.03
25/09/2019			22.36
17/10/2019	36.1		23.02
23/10/2019	35.39		25.02
14/11/2019	26.67		22.9
13/12/2019	53.74		25.69
14/01/2020	51.6		25.33
20/02/2020	53.9		24.51
23/03/2020	55.62		23.83
15/04/2020	49.6		23.3
20/05/2020	49.5		22.85
23/06/2020	54.62		21.95
24/07/2020	50.04		21.76
28/08/2020	52.57		21.15
23/09/2020	45.4		20.6
22/10/2020	42.13		20.38
23/11/2020	23.03		19.7
14/12/2020	32.34		19.78
25/01/2021	31.32		19.48
15/02/2021	31.29		19.53
29/03/2021	30.7		19.16
26/04/2021	30.35		18.98
26/05/2021	29.73		18.72
23/06/2021	29.3		18.65
22/07/2021	28.76		18.55
17/08/2021	28.57		18.47
21/09/2021	28.26		18.41
19/10/2021	28.14		18.47
24/11/2021	28.14		18.51
20/12/2021	27.84		18.26
20/01/2022	27.83		18.38
15/02/2022	27.6		18.13
22/03/2022	26.89		17.42
19/04/2022	26.29		16.87
30/05/2022	25.53		16.17
24/06/2022	25.25		16.18
22/07/2022	24.79		15.88
16/08/2022	24.3		15.55
23/09/2022	23.85		NM
20/10/2022	23.77		
24/11/2022	23.78		
19/12/2022	23.58		
16/01/2023	23.87		
17/02/2023	23.81		
14/03/2023	23.51		
11/04/2023	23.59		
12/05/2023	23.7		
16/06/2023	23.42		
14/07/2023	23.56	1	

Monitoring conducted by Melissa Mass (SEE Pty Ltd) for PF Formation using an acoustic water level probe

Table F2: Summary of Monthly Borewater Monitoring (2017-2023) Pits 8 & 13: 4378 Old Northern Road Maroota

Dete	Pit8MW8A	Pit8MW-8B	Pit8MW-8C	Pit8MW-8D	Pit8MW-8E	Pit8MW-8F	Pit13 MW-7D	Pit13 MW-6D
Date	(SWL mAHD)	(SWL mAHD)						
3/08/2020	189.23	186.1	186.715	189.715	189.85			
7/09/2020	189.24	185.94	186.61	189.555	189.64			
8/09/2020	189.23	185.91	186.6	189.52	189.6		188.78	
11/09/2020	189.24	185.835	186.53	189.39	189.46			182.3
18/09/2020	189.09	185.66	186.41	189.125	189.19			182.32
9/10/2020		185.27	186.12	188.405	188.755		188.55	182.41
2/11/2020		184.93	186.48	188.545				182.26
23/11/2020	188.9	185.31	186.45	188.715	188.75		188.66	182.53
14/12/2020	189.02	185.15	186.14	188.265	188.71		188.52	182.43
25/01/2021	188.99	185.44	186.34	188.875	188.91		188.66	182.61
15/02/2021	189.07	185.29	186.13	188.295			188.59	182.53
29/03/2021							188.86	183.15
26/04/2021							188.97	184.22
26/05/2021	189.02	188.29	188.58	190.615	190.7		189.07	184.43
23/06/2021	189.03	187.52	187.86	189.315	189.35		188.99	184.34
22/07/2021	188.99	187.06	187.46	188.445	188.59		189.05	184.42
17/08/2021	188.99	186.7	187.17	187.875	188.59		188.94	184.13
21/09/2021	188.99	186.46	186.91	188.045			189.02	183.99
19/10/2021	189	186.21	186.68	187.495		186.39	188.98	183.83
24/11/2021							188.97	183.64
20/12/2021	189.01	186.92	187.72	190.635	188.59	186.6	190.21	183.78
20/01/2022	189	187.15	187.53	190.405	188.59	186.81	189.2	183.79
15/02/2022	190.05	186.89		189.755	188.59	186.72	189.21	183.8
22/03/2022							189.79	186.33
19/04/2022							189.98	187.11
30/05/2022							190.19	187.39
24/06/2022							190.04	187.15
22/07/2022							190.26	188.12
16/08/2022								
23/09/2022							190.46	189.21
21/10/2022							190.53	188.15
24/11/2022							188.41	188.86
19/12/2022		189.89	191.35	191.045			191.23	187.48
16/01/2023		189.96	190.36	190.395			191.25	187.21
17/02/2023		190.17		191.095			190.22	187.17
14/03/2023							190.32	187.31
11/04/2023							190.29	187.08
12/05/2023							190.13	186.8
15/06/2023							190.12	186.61
14/07/2023							189.88	186.31
16/08/2023							189.67	186.02

Note: no data= area not accessible due to flooding & rain

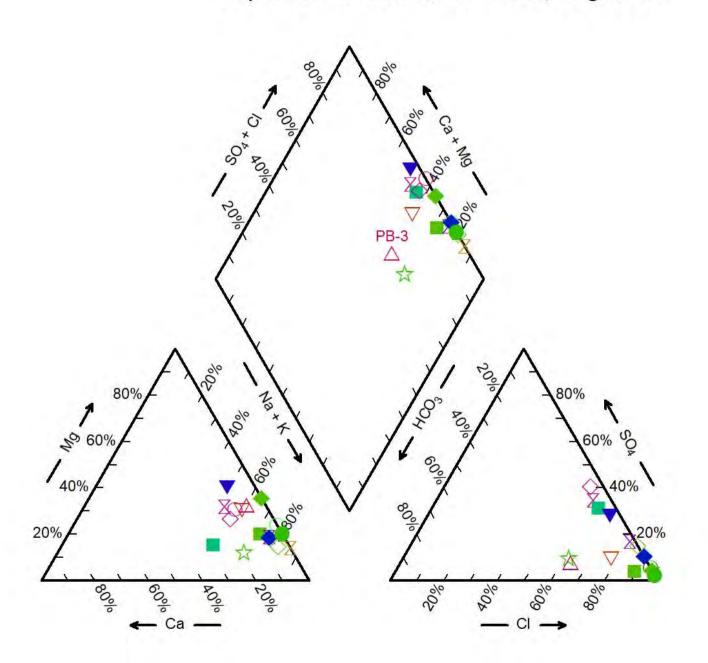
SWLs measured by M.Mass of SE Environmental

Pit8 wells decommissioned by early 2023 due to backfilling

Table F3: Summary of Monthly Borewater Monitoring (2017-2023)

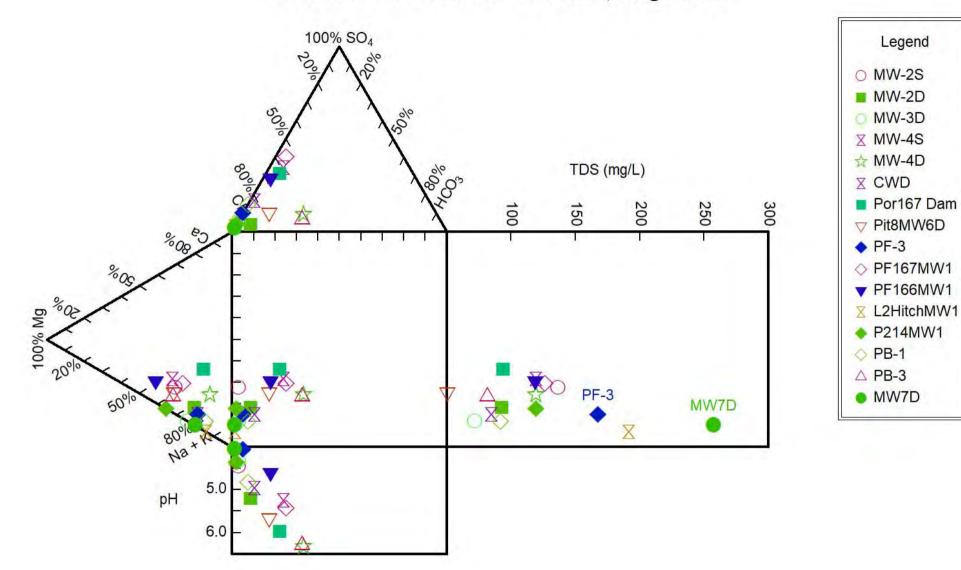
4378 Old Northern Road Maroota

			9	
	PF-1 SWL	PF-2 SWL	PF-3	
Date	(mAHD)	(mAHD)	SWL (mAHD)	
11/12/2018	189.58	193.7	184	
17/01/2019	189.61	193.76	184.01	
14/02/2019	189.53	193.69	184.05	
7/03/2019	189.53	193.68	184	
11/04/2019	189.56	193.59	184	
14/05/2019	189.55	193.63	184	
19/06/2019	189.55	193.69	184	
18/07/2019	189.56	193.68	184	
21/08/2019	189.48	193.6	184	
25/09/2019	189.5	193.44	184	
17/10/2019	189.63	193.67	184	
14/11/2019	189.52	193.66	184	
13/12/2019	189.48	193.67	184	
14/01/2020	189.42	193.56	184	
20/02/2020	189.64	193.56	184.6	
23/03/2020	189.73	193.82	184	
15/04/2020	189.78	194.23	184	
20/05/2020	189.84	194.7	184	
23/06/2020	189.84	194.95	184	
24/07/2020	189.76	194.82	184	
28/08/2020	189.84	195.17	184.02	
23/09/2020	189.91	195.46	184.05	
22/10/2020	189.85		184.32	
23/11/2020	189.91	195.47	184.39	
14/12/2020	189.83	195.49	184.31	
25/01/2021	189.94	195.76	184.28	
15/02/2021	189.88	195.68	184.31	
29/03/2021	190.02	195.82	185.72	
26/04/2021	190.03	196.08	185.75	
26/05/2021	190.13	196.16	186.34	
23/06/2021	190.02	195.98	185.46	
22/07/2021 17/08/2021	190.03	195.98	186.42	
·	190	195.86	186.32	
21/09/2021	189.98	195.83 195.75	186.2	
18/10/2021 24/11/2021	189.93 189.92	195.68	185.98 185.76	
20/12/2021	190	195.94	185.86	
20/01/2022	189.96	195.95	185.8	
15/02/2022	190.01	195.98	185.83	
22/03/2022	190.27	196.8	189.07	
19/04/2022	190.33	197.1	190.14	
30/05/2022		197	190.14	
24/06/2022	190.35	196.8	189.94	
22/07/2022			192.17	
16/08/2022			Probe broken	
23/09/2022			190.99	
21/10/2022	190.71	196.76	190.86	
24/11/2022	190.7	196.65	190.47	
19/12/2022	190.7	196.39	190.12	
16/01/2023	190.76	196.26	189.73	
17/02/2023	190.87	196.27	189.65	
14/03/2023	190.98	196.39	189.61	
11/04/2023	191.07	195.38	189.5	
12/05/2023	190.99	195.19	189.19	
15/06/2023	191.03	196.03	188.87	
14/07/2023	190.9	195.75	188.56	
16/08/2023	190.82	195.6	188.23	


Note: no data= area not accessible due to flooding SWLs measured by M.Mass of SE Environmental

APPENDIX E

Piper Trilinear & expanded Durov Hydro-chemical Diagrams (August 2023)


Piper 1: Groundwater & Dams, Aug 2023

Legend

- MW-2S
- MW-2D
- MW-3D
- X MW-4S
- ☆ MW-4D
- X CWD
- Por167 Dam
- ▼ Pit8MW6D
- ♦ PF-3
- PF167MW1
- ▼ PF166MW1
- ∠ L2HitchMW1
- P214MW1
- ◇ PB-1
- △ PB-3
- MW7D

Durov-2: Groundwater & Dams, Aug 2023

